\(\Delta ABC\) vuông cân tại A. Trên nửa mặt phẳng bờ AB không chứa điểm C vẽ tia Ax,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

A B C E F x y M I K

a) Gọi I là trung điểm của AB,

K là trung điểm của AC.

Ta có:

 \(IA=IE=MK=\frac{1}{2}AB\)

\(KF=KA=IM=\frac{1}{2}AC\)

TA CÓ TAM GIÁC IAE VÀ AKF LẦN LƯỢT CÂN TẠI I VÀ K

\(\Rightarrow\widehat{EIB}=2\widehat{xAB}=42^o;\widehat{CKF}=2\widehat{CAY}=42^o\)

\(\Rightarrow\widehat{EIB}=\widehat{CKF}\)

MI//AC

=> BIM=BAC ( đồng vị) (1)

M//AB

=> MKC=BAC (đồng vị)(2)

từ (1) và (2)

\(\Rightarrow\widehat{BIM}=\widehat{MKC}\)

TỪ ĐÂY TA CÓ THỂ DỄ DÀNG CÓ EIM=MKF

=> \(\Delta EIM\)\(\Delta MKF\)

=> ME = MF

=> TAM GIÁC MEF cân tại M

11 tháng 1 2018

góc A < 900 nha m,n

13 tháng 1 2018

ban co can minh ve hinh ko

4 tháng 12 2018

cho mk sửa xíu"câu c) á,trên nửa... nha chứ bên trên là mk viết sai á"!xl mí bn nha!

4 tháng 12 2018

Hình bạn tự vẽ

a) Xét tam giác BMA và tam giác CMD , có:

              BM=MC ( vì M là trung điểm của BC)

              góc BMA = góc CMD( 2 góc đối đỉnh)

               AM=MB ( giả thiết )

=> Tam giác BMA = tam giác CMD ( c-g-c )

=> góc BAM = góc CDM ( 2 góc tương ứng )(đpcm)

b) Xét tam giác BMD và tam giác CMA , có:

             BM=MC ( vì M là trung điểm của BC)

             góc BMD = góc CMA( 2 góc đối đỉnh)

             AM=MB ( giả thiết )

=> Tam giác BMD = tam giác CMA ( c-g-c )

=> BD = AC ( 2 cạnh tương ứng ) ( đpcm )

=> góc BDM = góc MAC ( 2 góc tương ứng )

Mà góc BMD và góc MAC ở vị trí sole trong

=> AC // BD ( dấu hiệu nhận biết 2 đường thẳng song song) ( đpcm )

Còn lại dễ bạn tự làm nha mỏi tay quá

21 tháng 3 2020

A B C x D E y K M

HD : xét 2 góc DAC và góc BAE

    ^DAB+^BAC=^DAC

   ^CAE+^BAC=^BAE

   ^DAB=^CAE=90o

=> ^DAC=^BAE

sau đó cm \(\Delta DAC=\Delta BAE\)=> câu a

b) cm DKE =90o

2 câu c ; d dễ tự làm!