\(\Delta ABC\) vuông cân tại A. Trên đáy BC lấy hai điểm M và N sao cho BM = CN = AB....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

A B C N M

a) Tam giác ABC vuông tại a (gt)

\(\Rightarrow\widehat{B}=\widehat{C}=45^0\)

Xét tam giác ABM và tam giác ACN có

\(\Delta ABM=\Delta ACN\left(c.g.c\right)\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{B}=\widehat{C}\left(cmt\right)\\BM=CN\left(gt\right)\end{cases}}\)

\(\Rightarrow AM=AN\)(2 cạnh tương ứng)

\(\Leftrightarrowđpcm\)

b) Vì tam giác có AB=BM(gt)

=> tam giác  ABC cân tại B

\(\Rightarrow\widehat{M_1}=\frac{180^0-45^0}{2}=67,5^0\)

Vì tam giác CNA CÓ CN=CA(gt)

=> tam giác ANC cân tại C

\(\Rightarrow\widehat{N_1}=\frac{130^0-45^0}{2}=67,5^0\)

\(\Rightarrow\Delta ANM=\widehat{N_1}+\widehat{MAN}+\widehat{M_1}=180^0\)(Theo định lí)

\(\Rightarrow67,5^0+67,5^0+\widehat{MAN}=180^0\)

\(\Rightarrow135^0+\widehat{MAN}=180^0\)

\(\Rightarrow\widehat{MAN}=180^0-135^0=45^0\)

Vậy MAN=450

16 tháng 2 2017

Tự vẽ hình:

xét \(\Delta\)ABN và \(\Delta\)ACN có:

AB=AC ( \(\Delta\)ABC cân)

\(\widehat{B}=\widehat{C}=45\)

BN=MC (cùng = BC-AB)

=> \(\Delta\)ABN = \(\Delta\)ACN (c-g-c)

=> AN=AN => \(\Delta\)AMN cân

Xét \(\Delta\)ABM có AB=BM => \(\Delta\)ABM cân có \(\widehat{B}=45\)=> \(\widehat{BAM}=\frac{180-45}{2}=67.5\)

Tương tự: \(\widehat{CAN}=\frac{180-45}{2}=67.5\)

=> \(\widehat{MAN}=\left(\widehat{BAM}+\widehat{CAN}-\widehat{ABC}\right)=67.5x2-90=35\)

Vậy ...

16 tháng 2 2017

=>xét tam giác ACN VÀ TAM GIÁC AMB CÓ

CN=MB

AC=AB

GÓC A CHUNG

=>TAM GIÁC ACN=TAM GIÁC AMB

=>AN=AN (CẠNH TƯƠNG ỨNG)

=>TAM GIÁC AMN CÂN TẠI A
A B C N M

9 tháng 8 2020

1

a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)

rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau 

suy ra AM = AN 

b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)

rồi chứng minh hai tam giác ABH và ACK bằng nhau

suy ra BH = CK

c) vì hai tam giác ABH và ACK bằng nhau (cmt)

nên AH = AK

d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)

nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)

còn lại tự cm

e) dễ cm tam giác ABC đều 

vẽ \(BH\perp AC\)

nên BH vừa là đường cao; phân giác và trung tuyến

dễ cm \(\Delta BHC=\Delta NKC\)

nên \(\widehat{BCH}=\widehat{NCK}=60^0\)

từ đó dễ cm AMN cân và OBC dều

18 tháng 5 2019

A B C N I O M 1 1 2

a,

\(\text{Xét ∆MOB và ∆NOI có }\)

 \(\text{MO = NO (gt) }\)

 \(\text{ BO = OI (gt) }\) 

\(\widehat{MOB}=\widehat{NOI}\)\(\text{(2 góc đối đỉnh) }\)

\(\Rightarrow\text{∆MOB = ∆NOI }\left(c.g.c\right)\) 

b, 

\(\text{ Vì ∆MOB = ∆NOI ( câu a) }\)

 \(\Rightarrow\text{ MB = NI }\)

    \(\text{BM = CN }\)

\(\Rightarrow\text{ NI = NC }\)

=>\(\text{∆NIC là ∆ cân }\)

c, \(\text{Vì ∆MOB = ∆NOI ( câu a) }\)

=> \(\widehat{B_1}=\widehat{C_1}\)   

\(\text{Mà 2 góc ở vị trí so le trong }\)

=>\(\text{ BM // NI }\)

=> \(\text{AB // NI }\)

=> \(\widehat{BAN}=\widehat{ANI}\)  hay \(\widehat{BAC}=\widehat{ANI}\) (1) 

\(\text{mà}\) \(\widehat{ANI}\)\(\text{là góc ngoài ∆INC }\)

=> \(\widehat{ANI}\)\(\widehat{I_2}+\widehat{IC}N\)

\(\text{Vì ∆NIC cân }\)=> \(\widehat{I_2}=\widehat{ICN}\) 

=> \(\widehat{ANI}=2\widehat{I_2}\)   (2) 

Từ 1,2  =>   \(\widehat{BAC}=2\widehat{I_2}\)

hay \(\widehat{BAC}=2\widehat{NIC}\)

1 tháng 4 2020

câu này thì em ko biết vì em mới học lớp6

A B C H N M

Bài làm

a) Vì tam giác ABC vuông cân ở A

Mà AH là phân giác

=> AH là trung tuyến.

=> AH = BH = HC

=> Tam giác AHC cân tại H

=> AH = HC

=> \(\widehat{HAC}=\widehat{HCA}\)

Mà \(\widehat{HAB}=\widehat{HAC}\)( Do AH phân giác )

=> \(\widehat{HCA}=\widehat{HAB}\)

Ta có: AN + NB = AB

AM + MC = AC

mà AB = AC, BN = AM

=> AN = MC

Xét tam giác AHN và tam giác CHM có:

AN = MC ( cmt )

\(\widehat{HCA}=\widehat{HAB}\)( cmt )

AH = HC ( cmt )

=> Tam giác AHN = tam giác CHM ( c.g.c)

b) Vì tam giác AHN = tam giác CHM ( cmt )

=> NH = HM 

Vì AH trung tuyến

=> BH = HC 

Xét tam giác AHM và tam giác NHB có:

NH = HM ( cmt )

BN = AM ( gt )

HB = HC ( cmt )

=> Tam giác AHM = tam giác NHB ( c.c.c )

1 tháng 5 2018

tham khảo ở đây : Câu hỏi của Nàng tiên cá - Toán lớp 7 - Học toán với OnlineMath

17 tháng 1 2018

A C B D E O N M

a) Ta có \(\widehat{B}+\widehat{C}=90^o\) mà \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{B}}{2};\widehat{C_1}=\widehat{C_2}=\frac{\widehat{C}}{2}\) nên \(\widehat{B_2}+\widehat{C_2}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{90^o}{2}=45^o\)

Xét tam giác BOC, có \(\widehat{BOC}+\widehat{B_2}+\widehat{C_2}=180^o\Rightarrow\widehat{BOC}=180^o-45^o=135^o\)

b) Xét tam giác BAD và BMD có:

Cạnh BD chung

\(\widehat{B_1}=\widehat{B_2}\)

AB = MB  (gt)

\(\Rightarrow\Delta BAD=\Delta BMD\left(c-g-c\right)\)

\(\Rightarrow\widehat{BMD}=\widehat{BAD}=90^o\)

Hoàn toàn tương tự \(\Delta EAC=\Delta ENC\left(c-g-c\right)\Rightarrow\widehat{ENC}=\widehat{EAC}=90^o\)

Ta có EN và DM cùng vuông góc với BC nên EN // DM

c) Theo câu b, \(\Delta BAD=\Delta BMD\Rightarrow AD=MD;\widehat{BDA}=\widehat{BDM}\)

Từ đó ta có \(\Delta OAD=\Delta OMD\left(c-g-c\right)\Rightarrow OA=OM.\)

Tương tự : \(\Delta OAE=\Delta ONE\left(c-g-c\right)\Rightarrow OA=ON.\)

Vậy nên OA = OM = ON

d) Ta có \(\Delta OAD=\Delta OMD\left(c-g-c\right)\Rightarrow\widehat{OAD}=\widehat{OMD}\)

\(\Delta OAE=\Delta ONE\left(c-g-c\right)\Rightarrow\widehat{OAE}=\widehat{ONE}\)

\(\Rightarrow\widehat{ONE}+\widehat{OMD}=\widehat{OAE}+\widehat{OAD}=\widehat{EAD}=90^o\)

\(\Rightarrow\widehat{NOM}=90^o\)  (Dạng bài qua O kẻ đường thẳng song song với EN và DM)

Vậy tam giác OMN vuông cân hay \(\widehat{ONM}+\widehat{OMN}=90^o\)

Xét tam giác AMN có \(\widehat{MAN}+\widehat{ANM}+\widehat{AMN}=180^o\)

\(\Leftrightarrow\widehat{MAN}+\widehat{ANO}+\widehat{ONM}+\widehat{AMO}+\widehat{OMN}=180^o\)

\(\Leftrightarrow\widehat{MAN}+\widehat{NAO}+\widehat{MAO}=180^o-90^o=90^o\)

\(\Leftrightarrow\widehat{2MAN}=90^o\)

\(\Leftrightarrow\widehat{MAN}=45^o\)