Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C N M
a) Tam giác ABC vuông tại a (gt)
\(\Rightarrow\widehat{B}=\widehat{C}=45^0\)
Xét tam giác ABM và tam giác ACN có
\(\Delta ABM=\Delta ACN\left(c.g.c\right)\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{B}=\widehat{C}\left(cmt\right)\\BM=CN\left(gt\right)\end{cases}}\)
\(\Rightarrow AM=AN\)(2 cạnh tương ứng)
\(\Leftrightarrowđpcm\)
b) Vì tam giác có AB=BM(gt)
=> tam giác ABC cân tại B
\(\Rightarrow\widehat{M_1}=\frac{180^0-45^0}{2}=67,5^0\)
Vì tam giác CNA CÓ CN=CA(gt)
=> tam giác ANC cân tại C
\(\Rightarrow\widehat{N_1}=\frac{130^0-45^0}{2}=67,5^0\)
\(\Rightarrow\Delta ANM=\widehat{N_1}+\widehat{MAN}+\widehat{M_1}=180^0\)(Theo định lí)
\(\Rightarrow67,5^0+67,5^0+\widehat{MAN}=180^0\)
\(\Rightarrow135^0+\widehat{MAN}=180^0\)
\(\Rightarrow\widehat{MAN}=180^0-135^0=45^0\)
Vậy MAN=450
Tự vẽ hình:
xét \(\Delta\)ABN và \(\Delta\)ACN có:
AB=AC ( \(\Delta\)ABC cân)
\(\widehat{B}=\widehat{C}=45\)
BN=MC (cùng = BC-AB)
=> \(\Delta\)ABN = \(\Delta\)ACN (c-g-c)
=> AN=AN => \(\Delta\)AMN cân
Xét \(\Delta\)ABM có AB=BM => \(\Delta\)ABM cân có \(\widehat{B}=45\)=> \(\widehat{BAM}=\frac{180-45}{2}=67.5\)
Tương tự: \(\widehat{CAN}=\frac{180-45}{2}=67.5\)
=> \(\widehat{MAN}=\left(\widehat{BAM}+\widehat{CAN}-\widehat{ABC}\right)=67.5x2-90=35\)
Vậy ...
=>xét tam giác ACN VÀ TAM GIÁC AMB CÓ
CN=MB
AC=AB
GÓC A CHUNG
=>TAM GIÁC ACN=TAM GIÁC AMB
=>AN=AN (CẠNH TƯƠNG ỨNG)
=>TAM GIÁC AMN CÂN TẠI A
A B C N M
1
a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)
rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau
suy ra AM = AN
b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)
rồi chứng minh hai tam giác ABH và ACK bằng nhau
suy ra BH = CK
c) vì hai tam giác ABH và ACK bằng nhau (cmt)
nên AH = AK
d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)
nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)
còn lại tự cm
e) dễ cm tam giác ABC đều
vẽ \(BH\perp AC\)
nên BH vừa là đường cao; phân giác và trung tuyến
dễ cm \(\Delta BHC=\Delta NKC\)
nên \(\widehat{BCH}=\widehat{NCK}=60^0\)
từ đó dễ cm AMN cân và OBC dều
A B C N I O M 1 1 2
a,
\(\text{Xét ∆MOB và ∆NOI có }\):
\(\text{MO = NO (gt) }\)
\(\text{ BO = OI (gt) }\)
\(\widehat{MOB}=\widehat{NOI}\)\(\text{(2 góc đối đỉnh) }\)
\(\Rightarrow\text{∆MOB = ∆NOI }\left(c.g.c\right)\)
b,
\(\text{ Vì ∆MOB = ∆NOI ( câu a) }\)
\(\Rightarrow\text{ MB = NI }\)
\(\text{BM = CN }\)
\(\Rightarrow\text{ NI = NC }\)
=>\(\text{∆NIC là ∆ cân }\)
c, \(\text{Vì ∆MOB = ∆NOI ( câu a) }\)
=> \(\widehat{B_1}=\widehat{C_1}\)
\(\text{Mà 2 góc ở vị trí so le trong }\)
=>\(\text{ BM // NI }\)
=> \(\text{AB // NI }\)
=> \(\widehat{BAN}=\widehat{ANI}\) hay \(\widehat{BAC}=\widehat{ANI}\) (1)
\(\text{mà}\) \(\widehat{ANI}\)\(\text{là góc ngoài ∆INC }\)
=> \(\widehat{ANI}\)= \(\widehat{I_2}+\widehat{IC}N\)
\(\text{Vì ∆NIC cân }\)=> \(\widehat{I_2}=\widehat{ICN}\)
=> \(\widehat{ANI}=2\widehat{I_2}\) (2)
Từ 1,2 => \(\widehat{BAC}=2\widehat{I_2}\)
hay \(\widehat{BAC}=2\widehat{NIC}\)
A B C H N M
Bài làm
a) Vì tam giác ABC vuông cân ở A
Mà AH là phân giác
=> AH là trung tuyến.
=> AH = BH = HC
=> Tam giác AHC cân tại H
=> AH = HC
=> \(\widehat{HAC}=\widehat{HCA}\)
Mà \(\widehat{HAB}=\widehat{HAC}\)( Do AH phân giác )
=> \(\widehat{HCA}=\widehat{HAB}\)
Ta có: AN + NB = AB
AM + MC = AC
mà AB = AC, BN = AM
=> AN = MC
Xét tam giác AHN và tam giác CHM có:
AN = MC ( cmt )
\(\widehat{HCA}=\widehat{HAB}\)( cmt )
AH = HC ( cmt )
=> Tam giác AHN = tam giác CHM ( c.g.c)
b) Vì tam giác AHN = tam giác CHM ( cmt )
=> NH = HM
Vì AH trung tuyến
=> BH = HC
Xét tam giác AHM và tam giác NHB có:
NH = HM ( cmt )
BN = AM ( gt )
HB = HC ( cmt )
=> Tam giác AHM = tam giác NHB ( c.c.c )
tham khảo ở đây : Câu hỏi của Nàng tiên cá - Toán lớp 7 - Học toán với OnlineMath
A C B D E O N M
a) Ta có \(\widehat{B}+\widehat{C}=90^o\) mà \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{B}}{2};\widehat{C_1}=\widehat{C_2}=\frac{\widehat{C}}{2}\) nên \(\widehat{B_2}+\widehat{C_2}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{90^o}{2}=45^o\)
Xét tam giác BOC, có \(\widehat{BOC}+\widehat{B_2}+\widehat{C_2}=180^o\Rightarrow\widehat{BOC}=180^o-45^o=135^o\)
b) Xét tam giác BAD và BMD có:
Cạnh BD chung
\(\widehat{B_1}=\widehat{B_2}\)
AB = MB (gt)
\(\Rightarrow\Delta BAD=\Delta BMD\left(c-g-c\right)\)
\(\Rightarrow\widehat{BMD}=\widehat{BAD}=90^o\)
Hoàn toàn tương tự \(\Delta EAC=\Delta ENC\left(c-g-c\right)\Rightarrow\widehat{ENC}=\widehat{EAC}=90^o\)
Ta có EN và DM cùng vuông góc với BC nên EN // DM
c) Theo câu b, \(\Delta BAD=\Delta BMD\Rightarrow AD=MD;\widehat{BDA}=\widehat{BDM}\)
Từ đó ta có \(\Delta OAD=\Delta OMD\left(c-g-c\right)\Rightarrow OA=OM.\)
Tương tự : \(\Delta OAE=\Delta ONE\left(c-g-c\right)\Rightarrow OA=ON.\)
Vậy nên OA = OM = ON
d) Ta có \(\Delta OAD=\Delta OMD\left(c-g-c\right)\Rightarrow\widehat{OAD}=\widehat{OMD}\)
\(\Delta OAE=\Delta ONE\left(c-g-c\right)\Rightarrow\widehat{OAE}=\widehat{ONE}\)
\(\Rightarrow\widehat{ONE}+\widehat{OMD}=\widehat{OAE}+\widehat{OAD}=\widehat{EAD}=90^o\)
\(\Rightarrow\widehat{NOM}=90^o\) (Dạng bài qua O kẻ đường thẳng song song với EN và DM)
Vậy tam giác OMN vuông cân hay \(\widehat{ONM}+\widehat{OMN}=90^o\)
Xét tam giác AMN có \(\widehat{MAN}+\widehat{ANM}+\widehat{AMN}=180^o\)
\(\Leftrightarrow\widehat{MAN}+\widehat{ANO}+\widehat{ONM}+\widehat{AMO}+\widehat{OMN}=180^o\)
\(\Leftrightarrow\widehat{MAN}+\widehat{NAO}+\widehat{MAO}=180^o-90^o=90^o\)
\(\Leftrightarrow\widehat{2MAN}=90^o\)
\(\Leftrightarrow\widehat{MAN}=45^o\)