\(\Delta ABC\) nhọn.Cm \(p^2\ge2R^2+8Rr+3r^2\) trong đó p...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

Không thì dùng định lý Euler nhanh hơn. Gọi d là khoản cách giữa tâm nội tiếp và ngoại tiếp thì ta có

\(d^2=R\left(R-2r\right)\ge0\)

\(\Leftrightarrow R\ge2r\)

27 tháng 10 2017

Ta có: \(S=\frac{abc}{4R}=\frac{\left(a+b+c\right)r}{2}\)

\(\Rightarrow\hept{\begin{cases}R=\frac{abc}{4S}\\r=\frac{2S}{a+b+c}\end{cases}}\)

Ta cần chứng minh:

\(R\ge2r\)

\(\Leftrightarrow\frac{abc}{4S}\ge\frac{4S}{a+b+c}\)

\(\Leftrightarrow abc\left(a+b+c\right)\ge16S^2\)

\(\Leftrightarrow abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)

Ta có: 

\(\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\le\frac{a+b-c+a+c-b}{2}=a\)

Tương tự ta có điều phải chứng minh

Tới đây thì xong rồi nhé. 

9 tháng 7 2017

A B C D E O H F

a) Tự chứng minh 

b) Diện tích của tứ giác có 2 đường chéo vuông góc với nhau là nửa tích 2 đường chéo.

Theo câu a, \(OA⊥EF\)nên \(S_{AEOF}=\frac{1}{2}OA.EF=\frac{1}{2}R.EF\)

tương tự:\(S_{BDOF}=\frac{1}{2}DF.OB=\frac{1}{2}R.DF\);\(S_{DOEC}=\frac{1}{2}.OC.DE=\frac{1}{2}R.DE\)

\(\Rightarrow S_{AEOF}+S_{BDOF}+S_{DOEC}=\frac{1}{2}R.P\)

hay \(S_{ABC}=\frac{1}{2}R.P=\frac{1}{4}.2RP\le\frac{R^2+P^2}{4}\)(Theo BĐT AM-GM)

27 tháng 11 2021

                                                                BÀI LÀM

a, xét tứ giác ADOE có:

góc A= góc E=góc D=90O

mà ta thấy: OE=OD( bán kính = nhau)

vậy tứ giác ADOE là hình vuông (dhnb)

 

 

27 tháng 11 2021

a) Dễ thấy tứ giác AEOD là hình chữ nhật (tứ giác có 3 góc vuông).
Mà OD = OE ( cùng bằng bán kính đường tròn nội tiếp tam giác ABC).
Nên tứ giác AEOD là hình vuông.
b) Gọi H là chân đường vuông góc kẻ từ O xuống BC.

Có SΔABC=SΔOAB+SΔOBC+SΔOAC
                     =12 OD.AB+12 OE.AC+12 OH.BC
                      =12 r.(AB+AC+BC)
                      =12 pr (pp là  chu vi của tam giác ABCABCrr là bán kính đường tròn nội tiếp).
 
c) Áp dụng định lý Pi-ta-go ta có: BC=AB2+AC2=10(cm).
Diện tích tam giác ABC là: 12 AB.AC=12 .6.8=24(cm2).
Chu vi tam giác ABC là: 6+8+10=24(cm).
Suy ra: 24=12 .24.rr=2(cm).

24 tháng 6 2017

ta có : BC = 2R ; AD = AE = r

nên 2R + r = BC + (AE + AD) = (BF + FC) + (AE + AD)

= (DB + EC) + (AE + AD) = (AD + DB) + (AE + EC)

= AB + AC ( đpcm)

24 tháng 6 2017

Tính chất hai tiếp tuyến cắt nhau

2 tháng 10 2017

Gọi A; B; CD,E,F làn lượt là tiếp điểm của đường tròn nội tiếp tam giác với BC; CA; AB

Khi đó: \(S=S_{BIC}+S_{CAI}+S_{BAI}=\frac{1}{2}\)  \(BC.ID+CA.IE+AB.IF=p.r\)

\(\frac{S}{h_a}+\frac{S}{h_b}+\frac{S}{h_c}=\frac{1}{2}\)  \(a+b+c=p=\frac{S}{r}\)

\(\RightarrowĐPCM\)

Không tính tổng quát, giả sử: \(h_a\le h_b\le h_c\)

\(\Rightarrow\frac{1}{h_a}\ge\frac{1}{h_b}\ge\frac{1}{h_c}\)

\(\Rightarrow\frac{1}{h_a}\ge\frac{1}{3}\)

\(\Rightarrow h_a\le3\)

Mặt khác: \(\frac{1}{h_a}< \frac{1}{r}=1\Rightarrow h_a>1\Rightarrow h_a\ge2\)

Vậy: \(h_a=2\)hoặc \(h_a=3\)

Nếu \(h_a=2\)

\(\frac{1}{h_b}+\frac{1}{h_c}=1-\frac{1}{2}=\frac{1}{2}\)**

Ta có: \(a\ge b\ge c\)do \(h_a\le h_b\le h_c\)

Để a; b; clà 3 cạnh của một hình tam giác ta chỉ cần b + c > a do khi \(a\ge b\ge c\)theo ta sẽ có ngay a + c > b, a + b > c

\(\Leftrightarrow\frac{S}{h_b}+\frac{S}{h_c}>\frac{S}{h_a}\)

\(\Leftrightarrow\frac{1}{h_b}+\frac{1}{h_c}>\frac{1}{h_a}=\frac{1}{2}\)mâu thuẫn với **

Vậy, loại trường hợp này.

\(\Rightarrow h_a=3\Rightarrow h_b\ge h_c\ge3\)

\(\frac{1}{h_b}+\frac{1}{h_c}=1-\frac{1}{3}=\frac{2}{3}\)

\(\frac{1}{h_b}\ge\frac{1}{h_c}\)

Suy ra: \(\frac{1}{h_b}\ge\frac{1}{3}\Rightarrow h_b\le3\)

Mà: \(h_b\ge\frac{1}{3}\Rightarrow h_b\le3\)

Vậy: \(h_b=3\Rightarrow h_c=3\)

\(\RightarrowĐPCM\)