Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D I K
Ta có \(\widehat{ABI}\)là góc ngoài của \(\Delta ABD\Rightarrow\widehat{ABI}\)\(=90^0+\widehat{A}\)
\(\widehat{ACK}\)là góc ngoài của \(\Delta ACE\Rightarrow\widehat{ACK}\)\(=90^0+\widehat{A}\)
\(\Rightarrow\widehat{ABI}\)\(=\widehat{ACK}\)
Xét \(\Delta IBA\)và\(\Delta ACK\)có :
IB = AC (gt)
\(\widehat{ABI}\)\(=\widehat{ACK}\)( cmt)
AB = CK ( gt )
\(\Rightarrow\Delta IBA=\Delta ACK\)( c . g . c )
\(\Rightarrow AI=AK\)( 2 cạnh tương ứng ) (1)
Vì \(\Delta AKE\)vuông tại A \(\Rightarrow\widehat{EAK}\)+\(\widehat{AKE}=90^0\)
Mà \(\widehat{AKE}=\widehat{IAB}\)( vì \(\Delta IBA=\Delta ACK\left(cmt\right)\)
\(\Rightarrow\widehat{IBA}+\widehat{EAK}=90^0\) (2)
Từ (1) và (2) \(\Rightarrow\)\(\Delta AIK\)vuông cân tại A
a) Xét tg ABH và ACK có :
AB=AC(tg ABC cân tại A)
\(\widehat{A}-chung\)
\(\widehat{AHB}=\widehat{AKC}=90^o\)
=> Tg ABH=ACK(cạnh huyền-góc nhọn) (đccm)
b) Do tg ABH=ACK (cmt)
\(\Rightarrow\widehat{ABH}=\widehat{ACK}\)
Mà : \(\widehat{ABC}=\widehat{ACB}\)(tg ABC cân tại A)
\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)
=> Tg OBC cân tại O
=> OB=OC (đccm)
c) Do : AB=AC (tg ABC cân tại A)
MB=NC(gt)
=> AB+BM=AC+CN
=> AM=AN
=> Tg AMN cân tại A
\(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
- Do tg ABH=ACK (cmt)
=> AK=AH
=> Tg AKH cân tại A
\(\Rightarrow\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
- Từ (1) và (2) \(\Rightarrow\widehat{M}=\widehat{AKH}\)
Mà chúng là 2 góc đồng vị
=> KH//MN (đccm)
#H
1)
+) Ta thấy \(\widehat{ECI}=\widehat{ACB}\) (Hai góc đối đỉnh)
Mà \(\widehat{ACB}=\widehat{ABC}\) (Tam giác ABC cân tại A)
nên \(\widehat{ECI}=\widehat{DBA}\)
Xét tam giác ABD và tam giác ICE có:
BD = CE (gt)
\(\widehat{DBA}=\widehat{ECI}\left(cmt\right)\)
CI = BA ( Cùng bằng AC)
\(\Rightarrow\Delta ABD=\Delta ICE\left(c-g-c\right)\)
+) Xét tam giác AEI, theo bất đẳng thức trong tam giác, ta có:
AI > AE + EI
Lại có do \(\Delta ABD=\Delta ICE\Rightarrow AD=IE\)
Vậy nên ta có AI > AE + AD \(\Rightarrow2AC>AD+AE\Rightarrow AB+AC>AD+AE\)
2) Do \(\Delta ABD=\Delta ICE\Rightarrow\widehat{MBD}=\widehat{NCE}\)
Vậy thì ta thấy ngay \(\Delta BDM=\Delta CEN\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow BM=CN\)
3) Ta thấy AB + AC = AM + MB + AC = AM + CN + AC = AM + AN
Ta cần chứng minh BC < MN.
Do BD = EC nên AC = DE
Xét tam giác vuông MDO ta có DO < MO (Quan hệ đường vuông góc, đường xiên)
Ta cũng có OE < ON
Vậy nên DE < MN hay BC < MN
Từ đó: AB + AC + BC < AM + AN + MN
Hay \(P_{AMN}>P_{ABC}\)
A B C N I O M 1 1 2
a,
\(\text{Xét ∆MOB và ∆NOI có }\):
\(\text{MO = NO (gt) }\)
\(\text{ BO = OI (gt) }\)
\(\widehat{MOB}=\widehat{NOI}\)\(\text{(2 góc đối đỉnh) }\)
\(\Rightarrow\text{∆MOB = ∆NOI }\left(c.g.c\right)\)
b,
\(\text{ Vì ∆MOB = ∆NOI ( câu a) }\)
\(\Rightarrow\text{ MB = NI }\)
\(\text{BM = CN }\)
\(\Rightarrow\text{ NI = NC }\)
=>\(\text{∆NIC là ∆ cân }\)
c, \(\text{Vì ∆MOB = ∆NOI ( câu a) }\)
=> \(\widehat{B_1}=\widehat{C_1}\)
\(\text{Mà 2 góc ở vị trí so le trong }\)
=>\(\text{ BM // NI }\)
=> \(\text{AB // NI }\)
=> \(\widehat{BAN}=\widehat{ANI}\) hay \(\widehat{BAC}=\widehat{ANI}\) (1)
\(\text{mà}\) \(\widehat{ANI}\)\(\text{là góc ngoài ∆INC }\)
=> \(\widehat{ANI}\)= \(\widehat{I_2}+\widehat{IC}N\)
\(\text{Vì ∆NIC cân }\)=> \(\widehat{I_2}=\widehat{ICN}\)
=> \(\widehat{ANI}=2\widehat{I_2}\) (2)
Từ 1,2 => \(\widehat{BAC}=2\widehat{I_2}\)
hay \(\widehat{BAC}=2\widehat{NIC}\)