Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D E K H N
a) Có: AB=AC
\(\Rightarrow\Delta ABC\) là tam giác cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Mà \(\widehat{ABD}+\widehat{ABC}=180^o\) (kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^o\)(kề bù)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(BD=CE\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)
tam giác BMC có: BM=BC
suy ra tam giác BMC là tam giác cân
suy ra góc BMC= góc BCM
góc MAD+góc MDA=90 độ
góc MBH=góc KBD=90 độ-góc MDA
=>góc MAD=góc MBH
A B C M N
ta có góc C = 180-80-60=400
Ta có :
\(\widehat{ACN}+\widehat{ACB}=180^0\\ \Rightarrow\widehat{ACN}=180^0-40^0=140^0\)
Ta lại có : CA=CN
=> tam giác ACN cân
=> \(\widehat{CAN}=\widehat{N}\)
\(\Rightarrow\widehat{CAN}+\widehat{N}=180^0-140^0=40^0\\ \Rightarrow\widehat{CAN}=\widehat{N}=20^0\)
\(\widehat{ABM}+\widehat{B}=180^0\\ \Rightarrow\widehat{ABM}=180^0-60^0=120^0\)
Ta lại có :
BA=BM => tam giác ABM cân
=> \(\widehat{MAB}=\widehat{M}\\ \Rightarrow\widehat{MAB}+\widehat{M}=180^0-120^0=60^0\\ \Rightarrow\widehat{MAB}=\widehat{M}=30^0\)
\(\widehat{A}\) của tam giác AMN = \(20^0+30^0+80^0=130^0\)
Chúc bạn học tốt !!!
XÉT \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)
THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{B}+\widehat{C}=130^o\)
MÀ\(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)
TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)
TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)
XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C
\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)
XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B
\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)
TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)
THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)
\(\Rightarrow\widehat{DAE}=115^0\)