\(\Delta\) ABC nhon , 2 duong cao BM va CN . tren tia doi , cua tia BM lay diem D...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

A B C M D E K H N

a) Có: AB=AC

 \(\Rightarrow\Delta ABC\) là tam giác cân tại A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

Mà \(\widehat{ABD}+\widehat{ABC}=180^o\) (kề bù)

      \(\widehat{ACE}+\widehat{ACB}=180^o\)(kề bù)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Xét \(\Delta ABD\) và \(\Delta ACE\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

\(BD=CE\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)

13 tháng 1 2019

Giai giup minh cau b va c luon nha

23 tháng 1 2019

tam giác BMC có: BM=BC

suy ra tam giác BMC là tam giác cân 

suy ra góc BMC= góc BCM

31 tháng 12 2022

góc MAD+góc MDA=90 độ

góc MBH=góc KBD=90 độ-góc MDA

=>góc MAD=góc MBH

27 tháng 1 2017

A B C M N

ta có góc C = 180-80-60=400

Ta có :

\(\widehat{ACN}+\widehat{ACB}=180^0\\ \Rightarrow\widehat{ACN}=180^0-40^0=140^0\)

Ta lại có : CA=CN

=> tam giác ACN cân

=> \(\widehat{CAN}=\widehat{N}\)

\(\Rightarrow\widehat{CAN}+\widehat{N}=180^0-140^0=40^0\\ \Rightarrow\widehat{CAN}=\widehat{N}=20^0\)

\(\widehat{ABM}+\widehat{B}=180^0\\ \Rightarrow\widehat{ABM}=180^0-60^0=120^0\)

Ta lại có :

BA=BM => tam giác ABM cân

=> \(\widehat{MAB}=\widehat{M}\\ \Rightarrow\widehat{MAB}+\widehat{M}=180^0-120^0=60^0\\ \Rightarrow\widehat{MAB}=\widehat{M}=30^0\)

\(\widehat{A}\) của tam giác AMN = \(20^0+30^0+80^0=130^0\)

Chúc bạn học tốt !!!

21 tháng 3 2020

XÉT \(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)

THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)

                      \(\widehat{B}+\widehat{C}=130^o\)

\(\widehat{B}=\widehat{C}\)

\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)

TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)

\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)

TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)

\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)

XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C 

\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)

XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B

\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)

TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)

THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)

       \(\Rightarrow\widehat{DAE}=115^0\)