\(\Delta ABC\) , M là trung điểm BC. Trên tia đối của tia MA lấy E sao cho CE // AB...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMAB và ΔMEC có 

\(\widehat{MBA}=\widehat{MCE}\)

MB=MC

\(\widehat{AMB}=\widehat{EMC}\)

Do đó: ΔMAB=ΔMEC

b: Ta có: ΔMAB=ΔMEC

nên MA=ME

hay M là trung điểm của AE

Xét tứ giác ABEC có

M là trung điểm của AE

M là trung điểm của BC

DO đó: ABEC là hình bình hành

SUy ra: AC//BE

c: Sửa đề: BH\(\perp\)AC

Xét ΔAHB vuông tại H và ΔEKC vuông tại K có

AB=EC

\(\widehat{HAB}=\widehat{KEC}\)

Do đó:ΔAHB=ΔEKC

Suy ra: BH=CK

Xét tứ giác BHCK có

BH//CK

BH=CK

Do đó: BHCK là hình bình hành

mà \(\widehat{BHC}=90^0\)

nên BHCK là hình chữ nhật

Suy ra: KH=BC

1: Xét ΔABM và ΔECM có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó:ΔABM=ΔECM

2: Xét tứ giác ABEC có

M là trung điểm của AE

M là trung điểm của BC

Do đó:ABEC là hình bình hành

Suy ra: AC//BE

26 tháng 4 2017

A B C E M

a) Xét hai tam giác vuông ABM và ECM có:

MB = MC (gt)

MA = ME (gt)

Vậy: \(\Delta ABM=\Delta ECM\left(ch-cgv\right)\)

b) Vì \(\Delta ABM=\Delta ECM\left(cmt\right)\)

Suy ra: \(\widehat{ABM=\widehat{BCE}}\) ( hai góc tương ứng)

\(\widehat{ABM=90^o}\)

Nên \(\widehat{BCE=90^o}\) hay EC \(\perp\) AB

c) Vì \(\Delta ABC\) vuông tại B

nên \(\widehat{ABC>\widehat{ACB}}\) (vì \(\widehat{ABC=90^o}\))

\(\Rightarrow\) AC > AB (quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà AB = CE (\(\Delta ABM=\Delta ECM\))

Do đó: AC > CE

d) Ta có: \(\widehat{BAE=\widehat{AEC}}\) (\(\Delta ABM=\Delta ECM\))

Mà hai góc này ở vị trí so le trong

Vậy: BE // AC.

18 tháng 2 2017

A B C H O F E 1 1 1 1 1 2

Giải:

a) Xét \(\Delta BEC,\Delta CFB\) có:

\(\widehat{E_1}=\widehat{F_1}=90^o\)

BC: cạnh chung

\(\widehat{B}=\widehat{C}\) ( \(\Delta ABC\) cân tại A )
\(\Rightarrow\Delta BEC=\Delta CFB\) ( c.huyền - g.nhọn ) ( đpcm )

b) Vì \(\Delta BEC=\Delta CFB\)

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\) ( góc t/ứng )

\(\Rightarrow\Delta BOC\) cân tại O

\(\Rightarrow OB=OC\)

Xét \(\Delta ABO,\Delta ACO\) có:

AB = AC ( t/g ABC cân tại A )

AO: cạnh chung

OB = OC ( cmt )

\(\Rightarrow\Delta ABO=\Delta ACO\left(c-c-c\right)\)

\(\Rightarrow\widehat{A_1}=\widehat{A_2}\) ( góc t/ứng )

\(\Rightarrow AO\) là tia phân giác của \(\widehat{A}\) ( đpcm )

c) Áp dụng định lí Py-ta-go vào \(\Delta BEC\left(\widehat{E_1}=90^o\right)\)ta có:

\(BC^2=BE^2+CE^2\)

\(\Rightarrow13^2=BE^2+5^2\)

\(\Rightarrow BE^2=144\)

\(\Rightarrow BE=12\)

d) Xét \(\Delta ABH,\Delta ACH\) có:
AB = AC ( t/g ABC cân tại A )

\(\widehat{A_1}=\widehat{A_2}\) ( theo b )

AH: cạnh chung

\(\Rightarrow\Delta ABH=\Delta ACH\left(c-g-c\right)\)

\(\Rightarrow\widehat{AHB}=\widehat{AHC}\) ( góc t/ứng )

\(\widehat{AHB}+\widehat{AHC}=180^o\) ( kề bù )

\(\Rightarrow\widehat{AHB}=\widehat{AHC}=90^o\)

\(\Rightarrow AH\perp BC\)

hay \(AO\perp BC\) tại H ( đpcm )

Vậy...

18 tháng 2 2017

I don't Knowbucminh

a) Xét ∆ vuông ABH ta có : 

BH < AB ( trong ∆ vuông cạnh góc vuông nhỏ hơn cạnh huyền) 

Xét ∆ vuông AHC ta có : 

HC < AC (...)

=> BH < AC 

b) Vì AH = HE 

=> H là trung điểm AE 

Mà BHA = 90° 

=> BH vuông góc với AE 

=> BH là trung trực ∆BAE 

=> ∆BAE cân tại B 

1 tháng 8 2019

a) Đường xiên AB bé hơn đường xiên AC nên hình chiếu của AB trên BC bé hơn hình chiếu của AC trên BC

\(\Rightarrow BH< CH\left(đpcm\right)\)

b) Hai tam giác vuông ABH và EBH có:

       BH: cạnh chung

       HE = HA (gt)

Suy ra \(\Delta ABH=\Delta EBH\left(2cgv\right)\)

\(\Rightarrow AB=EB\)(hai cạnh tương ứng)

\(\Rightarrow\Delta ABE\)cân tại B ( có hai cạnh bên bằng nhau)

10 tháng 5 2017

Nguyễn Huy TúAce Legonasoyeon_Tiểubàng giảiTrần Việt LinhHoàng Lê Bảo NgọcVõ Đông Anh TuấnPhương An

(ko vẽ hình và làm câu a,b,c cũng đc,chủ yếu là câu d mọi người giúp mk vs nhé)

11 tháng 5 2017

Xuân Tuấn TrịnhTuấn Anh Phan Nguyễn

26 tháng 4 2017

g = 90 là sao bạn

10 tháng 5 2017

góc A = 90 độ à

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

22 tháng 12 2017

a b c m d 1 2 3 4 e f

Xét T/G ABC và DCM 

CÓ ; M1=M2 ( đối đỉnh) CM=BM (M là trung điểm BC) AM=MD (gt) -> ABC=DCM(CgC)

Có T/G ABC=DCM ->  Góc D=BAM(2 góc tương ứng )mà 2 góc Sole trong -> AB//DC

C) Xét T/G BFM và CEM  có CM=MB(GT) E3=F4=90 độ M4=M3 ( đối đỉnh) ->  BFM=CEM(g.c.g)

-> ME=MF ->  M là trung điểm EF 

22 tháng 12 2017

A B C M D E F

a, Xét t/g ABM và t/g DCM có:

AM=DM(gt)

BM=CM(gt)

góc AMB=góc DMC (đối đỉnh)

=>t/g ABM=t/g DCM (c.g.c)

b, Vì t/g ABM=t/g DCM (cmt) => góc ABM = góc DCM (2 góc t/ứ)

Mà 2 góc này là cặp góc so le trong

=> AB//DC

c, Xét t/g BEM và t/g CFM có:

góc BEM = góc CFM = 90 độ (gt)

BM=CN(gt)

góc BME = góc CMF (đối đỉnh)

=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)

=>EM=FM (2 cạnh t/ứ)

=>M là trung điểm của EF