\(\Delta ABC.\) Gọi AA', BB', CC' là các đường cao của nó.

a)C/m

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giácBC'B'C có 

góc BC'C=góc BB'C=90 độ

nên BC'B'C là tứ giác nội tiếp

=>góc AB'C'=góc ABC

=>ΔABC đồng dạng với ΔAB'C'

b:\(S=\dfrac{1}{2}\cdot4\cdot8\cdot sin30^0=2\cdot8\cdot\dfrac{1}{2}=8\left(cm^2\right)\)

 

TAM GIÁC ĐỒNG DẠNG 1, a) Cho AB=6 dm, AC=15 cm , tìm tỉ số hai đoạn thẳng AB và AC . b) Cho AB=6 cm, AC=18 cm , tìm tỉ số hai đoạn thẳng AB và AC . 2, ΔMNP _____ ΔABC thì : a) \(\frac{MN}{AB}=\)........ b) \(\frac{MP}{AC}=........\) 3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây: A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và...
Đọc tiếp

TAM GIÁC ĐỒNG DẠNG

1, a) Cho AB=6 dm, AC=15 cm , tìm tỉ số hai đoạn thẳng AB và AC .

b) Cho AB=6 cm, AC=18 cm , tìm tỉ số hai đoạn thẳng AB và AC .

2, ΔMNP _____ ΔABC thì : a) \(\frac{MN}{AB}=\)........ b) \(\frac{MP}{AC}=........\)

3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây:

A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và 2 cm ; 5cm ; 4 cm.

C. 6 cm; 5 cm; 7 cm và 6 cm; 5 cm; 8 cm. D. 3 cm; 4 cm; 5cm và 6 cm;8 cm; 10 cm.

4, a) Cho ΔABC có AB=3 cm, AC= 6 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại E. Biết BD= 2cm. Tính độ dài đoạn thẳng EC ❓

b) Cho \(\Delta ABC\) có AB = 6 cm, AC= 8 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại D. Biết CD= 4 cm. Tính độ dài đoạn thẳng DB ❓

5. a) Cho \(\Delta DEF\sim\Delta ABC\) theo tỉ số đồng dạng k = 2. Tìm tỉ số \(\frac{S_{DÈF}}{S_{ABC}}\)

b) Cho \(\Delta DEF\)\(\sim\Delta ABC\) theo tỉ số đồng dạng k=\(\frac{1}{2}\). Tìm tỉ số \(\frac{S_{DEF}}{S_{ABC}}\)

6. Cho \(\Delta ABC.\)Lấy 2 điểm D và E lần lượt nằm trên cạnh AB và AC sao cho \(\frac{AD}{AB}=\frac{AE}{AC}.\)Kết luận nào sai

A. \(\Delta ADE\sim\Delta ABC\) B. DE//BC C. \(\frac{AE}{AD}=\frac{AC}{AB}\) D. \(\Delta ADE=\Delta ABC\)

7, Nếu hai tam giác ABC và DEF có góc A= góc D, góc C= góc E thì:

A.\(\Delta ABC\sim\Delta DEF\) B. \(\Delta ABC\sim\Delta EDF\)

C. \(\Delta ABC\sim\Delta DFE\) D.\(\Delta ABC\sim\Delta FED\)

giải giúp mình với! Mình cần gấp

1

TAM GIÁC ĐỒNG DẠNG

1, a) Tỉ số hai đoạn thẳng AB và AC : \(\frac{AB}{AC}=\frac{6}{15}\)

b) Tỉ số hai đoạn thẳng AB và AC . : \(\frac{AB}{AC}=\frac{6}{18}=\frac{1}{3}\)

2, ΔMNP ~ ΔABC thì : \(\frac{MN}{AB}=\frac{NP}{BC}=\frac{MP}{AC}\)

3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây:

A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và 2 cm ; 5cm ; 4 cm.

C. 6 cm; 5 cm; 7 cm và 6 cm; 5 cm; 8 cm. D. 3 cm; 4 cm; 5cm và 6 cm;8 cm; 10 cm.

4, a) Cho ΔABC có AB=3 cm, AC= 6 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại E. Biết BD= 2cm. Tính độ dài đoạn thẳng EC ❓

Bạn ơi D ở đâu vậy ?

b) Cho ΔABCΔABC có AB = 6 cm, AC= 8 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại D. Biết CD= 4 cm. Tính độ dài đoạn thẳng DB ❓

Xét \(\Delta ABC\) có AD là phân giác

\(\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\Rightarrow BD=\frac{AB.CD}{AC}=3cm\)

5. a) Cho ΔDEF∼ΔABC theo tỉ số đồng dạng k = 2. Tìm tỉ số SDÈFvà SABC

\(\frac{S_{\Delta DEF}}{S_{\Delta ABC}}=k^2=2^2=4\)

b) Cho ΔDEF∼ΔABC theo tỉ số đồng dạng k=\(\frac{1}{2}\). Tìm tỉ số SDEF và SABC

\(\frac{S_{\Delta DEF}}{S_{\Delta ABC}}=k^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

6. Cho ΔABC..Lấy 2 điểm D và E lần lượt nằm trên cạnh AB và AC sao cho AD/AB=AE/AC Kết luận nào sai

A. ΔADE∼ΔABC B. DE//BC

C. AE/AD=AC/AB D. ΔADE=ΔABC

7, Nếu hai tam giác ABC và DEF có góc A= góc D, góc C= góc E thì:

A.ΔABC∼ΔDEF B. ΔABC∼ΔEDF

C. ΔABC∼ΔDFE D.ΔABC∼ΔFED

14 tháng 5 2019

cảm ơn bạn nhiều nha

22 tháng 4 2019

Ôn tập: Tam giác đồng dạngMk chỉ làm đc 2 câu này thoy!!!

30 tháng 3 2016

Câu 1 bạn cộng vào A 4 đơn vị còn mỗi phân thức bên vế phải thì cộng mỗi cái bàng một đơn vị, sau đó sẽ có 2 phân thức tử bằng a+b và 2 phân thức tử bằng c+d, bạn đặt ra ngoài làm nhân tử chung, bên trong ngoặc sẽ là 1/a+b + 1/b+c, bạn áp dụng bất đẳng thức 1/a + 1/b >= 4/a+b sẽ được bên trong ngoặc là 4/a+b+c+d, nhân 2 cái ở ngoài vào, rút gọn phân thức đi sẽ được kết quả là A+4 >= 4 nên A>=0

Bài 1 : cho \(\Delta ABC\) vuông tại A , đường cao AH (H thuộc BC) . Biết BH =4cm , CH= 9cm . Gọi I,K lần lượt là hình chiếu của H lên AB và AC . Chứng minh rằnga, Tứ giác AIHk là hình chữ nhật  b, \(\Delta AKI\) \(\sim\Delta ABC\)c, Tính diện tích \(\Delta ABC\)Bài 2 : Cho hình thang vuông ABCD ( góc A = góc D =\(90^0\) ) , AB=6cm , CD=12 cm, AD=17 cm . Trên cạch AD , đặt đoạn AE = 8 cma, C/m : \(\Delta ABE\sim\Delta...
Đọc tiếp

Bài 1 : cho \(\Delta ABC\) vuông tại A , đường cao AH (H thuộc BC) . Biết BH =4cm , CH= 9cm . Gọi I,K lần lượt là hình chiếu của H lên AB và AC . Chứng minh rằng

a, Tứ giác AIHk là hình chữ nhật  

b, \(\Delta AKI\) \(\sim\Delta ABC\)

c, Tính diện tích \(\Delta ABC\)

Bài 2 : Cho hình thang vuông ABCD ( góc A = góc D =\(90^0\) ) , AB=6cm , CD=12 cm, AD=17 cm . Trên cạch AD , đặt đoạn AE = 8 cm

a, C/m : \(\Delta ABE\sim\Delta DEC\)

b, tính tỉ số diện tích \(\Delta ABE\) và diện tích \(\Delta DEC\)

c, Tính BC

Bài 3: Cho tam giác ABC vuông tại A , có AB=3cm, AC=5cm , đường phân giác AD . Đường vuông góc với DC cắt AC ở E

a, Chứng minh rằng \(\Delta ABC\sim\Delta DEC\)

b, Tính độ dài các đoạn thẳng BC , BD

c, Tính độ dài AD

d, Tính diện tích \(\Delta ABC\) và diện tích tứ giác ABDE

2
23 tháng 8 2019

Bài 1)

a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)

Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật

b) Câu này không đúng rồi bạn 

Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân 

Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)

c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông

\(AB^2=BC.BH=13.4\)

\(\Rightarrow AB=2\sqrt{13}\)

\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)

Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)

23 tháng 8 2019

Bài 2)

a) \(ED=AD-AE=17-8=9\)

Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy

\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)

Vậy \(\Delta ABE~\Delta DEC\)

b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)

c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông 

Nên BK = AD và AB = DK 

\(\Rightarrow KC=DC-DK=12-6=6\)

Theo định lý Pytago ta có

\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)

21 tháng 8 2019

giup mình với mai đi hc rồi

AH
Akai Haruma
Giáo viên
9 tháng 4 2018

Lời giải:

a)

Vì $M, N$ lần lượt là trung điểm của $AB,AC$ nên:

\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{1}{2}\)

Xét tam giác $AMN$ và $ABC$ có:

\(\left\{\begin{matrix} \text{chung góc A}\\ \frac{AM}{AB}=\frac{AN}{AC}\end{matrix}\right.\Rightarrow \triangle AMN\sim \triangle ABC\) (c.g.c)

b)

Áp dụng định lý Pitago cho tam giác vuông $ABC$:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=15\) (cm)

Ta có:

\(\frac{AB.AC}{2}=S_{ABC}=\frac{AH.BC}{2}\)

\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{9.12}{15}=7,2\) (cm)

c)

Vì \(NP\parallel AB\) nên áp dụng định lý Ta-lét ta có:

\(\frac{NP}{AB}=\frac{CN}{CA}=\frac{1}{2}\Rightarrow NP=\frac{AB}{2}; NC=\frac{AC}{2}\)

Mặt khác, \(NP\parallel AB, AB\perp AC\Rightarrow NP\perp AC\)

Do đó:

\(S_{NPC}=\frac{NP.NC}{2}=\frac{\frac{AB}{2}.\frac{AC}{2}}{2}=\frac{AB.AC}{8}\)

\(S_{ABC}=\frac{AB.AC}{2}\)

\(\Rightarrow \frac{S_{NPC}}{S_{ABC}}=\frac{AB.AC}{8}: \frac{AB.AC}{2}=\frac{1}{4}\)

a: Xét ΔABD và ΔACB có

góc ABD=góc ACB

góc BAD chung

Do đo: ΔABD đồng dạng với ΔACB

b: Ta có: ΔABD đồng dạng với ΔACB

nên AD/AB=AB/AC
=>AD/2=2/4=1/2

=>AD=1cm

=>DC=3cm

30 tháng 3 2018

A B E C F

a) Xét \(\Delta\)EBA và \(\Delta\)ABC có:

\(\widehat{BEA}=\widehat{BAC}\left(=90^o\right)\)

\(\widehat{B}\) là góc chung

\(\Rightarrow\) \(\Delta\)EBA đòng dạng vs \(\Delta\)ABC (g - g)

\(\Rightarrow\) \(\dfrac{BE}{AB}=\dfrac{AB}{BC}\)

\(\Rightarrow\) AB2 = BE . BC

b) Trong \(\Delta\)ABC vuông tại A có:

BC2 = AB2 + AC2

= 32 . 42

= 25

\(\Rightarrow\) BC = \(\sqrt{25}\) = 5(cm)

Vì: AB2 = BC.BE (cmt)

\(\Rightarrow\) BE = \(\dfrac{AB^2}{BC}\)

= \(\dfrac{3^2}{5}\) = 1.8(cm)

Xét \(\Delta\)BEA vuông tại E có:

AE2 = AB2 + BE2

= 32 + 1.82

= \(\dfrac{306}{25}\)

\(\Rightarrow\)AE = \(\sqrt{\dfrac{306}{25}}\) = \(\dfrac{3\sqrt{34}}{5}\)(cm)

c) Trong \(\Delta\)ABC có BF là tia phân giác của góc B

\(\Rightarrow\) \(\dfrac{AF}{AB}=\dfrac{CF}{BC}\)

Áp dụng t/chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{AF}{AB}=\dfrac{CF}{BC}\)\(=\dfrac{AF+CF}{AB+BC}=\dfrac{AC}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{AF}{3}=\dfrac{1}{2}\Rightarrow AF=1.5\left(cm\right)\)

Trong \(\Delta\)ABF vuông tại A có:

BF2 = AB2 + AF2

= 32 + 1.52

= 11.25

\(\Rightarrow\) BF = \(\sqrt{11.25}\) = \(\dfrac{3\sqrt{5}}{2}\)(cm)