Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ
B H C P E A F Q
Bài làm
Câu a)
Có góc APH = 90 độ ( HP vuông góc với AB)
Mà góc APH + góc APE = 180 độ (kề bù)
Suy ra góc APE = APH = 90 độ
Xét tam giác APE và tam giác APH có
+ PE = PH (gt)
+ góc APE = góc APH = 90 độ (cmt)
+ AP là cạnh chung
Do đó tam giác APE = tam giác APH (c.g.c)
Có góc AQH + góc AQF = 180 độ (kề bù)
Suy ra góc AQH = góc AQF = 90 độ
Xét tam giác AQH và tam giác AQF có
+ QH = QF (gt)
+ góc AQH = góc AQF = 90 độ (cmt)
+ AQ là cạnh chung
Do đó tam giác AQH = tam giác AQF
Câu b)
Gợi ý: Để chứng minh E, A, F thẳng hàng cần phải chứng minh (cách đơn giản nhất) góc EAF là góc bẹt hay nói cách khác là góc EAF = 180 độ
Trong hình có
Vì tam giác AQF = tam giác AQH (cmt)
Nên góc QAF = góc QAH (hai góc tương ứng)
Vì tam giác APE = tam giác APH (cmt)
Nên góc PAE = góc PAH (hai góc tương ứng)
Mà góc PAQ = góc QAH + góc PAH = 90 độ ( AH nằm giữa AP và AQ)
Suy ra góc QAF + góc PAE = 90 độ
Mà góc EAF = góc EAP + góc BAC + góc QAF
Suy ra góc EAF = 90 độ + góc EAP + góc QAF
Suy ra góc EAF = 90 độ + 90 độ = 180 độ
Vậy E, A, F thẳng hàng
b)
Vì PE=PH, mà PH lại vuông góc vs AB
=> BP là đường trung trực của EH
=> ∆BEH là tam giác cân
=> Góc E= góc BHE
Tương tự vậy ∆CHF cũng cân
=> Góc F= góc CHF
Lại có HQ vuông góc AB, BA vuông AC( vì BAC là góc vuông)
=> AB//HQ
=> góc PHQ=90độ ( trong cùng phía vs góc AQH)
Vậy ta có góc EHB + góc FHC =90 độ
Ta có góc E+ góc EBH+góc EHB + góc FHC+ góc F+ FCH = 360 độ ( = tổng 6 gióc 2 tam giác BEH và CFH)
<=>2(góc EHB+góc FHC) + góc EBH + góc FCH = 360 độ
<=>2.90 độ + góc EBH + góc FCH = 360 độ
<=> góc EBH + góc FCH = 360 độ - 180 độ = 180 độ
Ta thấy Góc EBH và góc FCH ở vị trí trong cùng phía bù nhau
=>BE//CF
Kí hiệu tam giác viết là t/g nhé
a) BI là phân giác ABC nên ABI = CBI
Xét t/g BID vuông tại D và t/g BIF vuông tại F có:
BI là cạnh chung
DBI = FBI (cmt)
Do đó, t/g BID = t/g BIF ( cạnh góc vuông và góc nhọn kề) (đpcm)
b) t/g BID = t/g BIF (câu a) => ID = IF (2 cạnh tương ứng) (1)
C/m tương tự câu a ta cũng có: t/g ADI = t/g AEI ( cạnh góc vuông và góc nhọn kề)
=> ID = IE (2 cạnh tương ứng)
Từ (1) và (2) => ID = IE = IF (đpcm)
ban tu ve hinh nhe
a) Xet tam giac BID va tam giac BIF co:
BI:canh chung
goc DBI=goc IBF(vi tia BI la tia phan giac cua goc DBF)
goc BDI=goc BFI(=90do)
Vay tam giac BID=tam giac BIF(canh huyen, goc nhon)
b) Vi tam giac BID=tam giac BIF(cau a)
Nen ID=IF(2 canh tuong ung) (1)
Xet tam giac AID va tam giac AIE co:
AI:canh chung
goc DAI=goc EAI(vi tia AI la tia phan giac cua goc DAE)
goc ADI=goc AEI(=90do)
Nen tam giac AID=tam giac AIE(canh huyen,goc nhon)
Suy ra:ID=IE(2 canh ung) (2)
Tu (1), (2)\(\Rightarrow\) IF=ID=IE
Chuc ban ngay cang hoc gioi len nhe
Hen gap lai ban vao dip khac nhe
a: Xét ΔAPE vuông tại P và ΔAPH vuông tại P có
AP chung
PE=PH
Do đó: ΔAPE=ΔAPH
Suy ra: \(\widehat{EAP}=\widehat{HAP}\)
hay AB là phân giác của góc HAE(1)
Xét ΔAHQ vuông tại Q và ΔAFQ vuông tại Q có
AQ chung
HQ=FQ
Do đó: ΔAHQ=ΔAFQ
Suy ra: \(\widehat{HAQ}=\widehat{FAQ}\)
hay AC là tia phân giác của góc FAH(2)
b: Từ (1) và (2) suy ra \(\widehat{FAE}=2\cdot90^0=180^0\)
=>F,A,E thẳng hàng