\(\Delta ABC\) , đường cao AH . Trên cùng một nửa mặt phẳng bờ là BC chứa điểm A, lấy...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

Có vẻ hơi khó nhưng mik sẽ cố gắng giúp bn!bucminh

Nếu hông đc thì thông cảm nha!leuleu

1 tháng 1 2018

Cảm ơn nhé
Giúp mik vs T-T

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.3/ Cho tam giác nhọn ABC. H là trực tâm:CMR: a) HA+HB+HC<AB+AC           b)...
Đọc tiếp

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.

2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.

3/ Cho tam giác nhọn ABC. H là trực tâm:

CMR: a) HA+HB+HC<AB+AC

           b) HA+HB+HC<\(\frac{2}{3}\)(AB+BC+CA)

4/ Cho \(\Delta ABC\) vuông tại A. Gọi I là giao điểm của các đường phân giác ABC. Vẽ \(ID\perp AB\) tại D. CMR AB+AC-BC=2ID

5/ Cho \(\Delta ABC\) vuông tại A. AH là đường cao. Gọi I,K,S lần lượt là giao điểm các đường phân giác của \(\Delta ABC\)\(\Delta ABH\)\(\Delta ACH\). Vẽ \(II'\perp BC\) tại I', \(KK'\perp BC\) tại K', \(SS'\perp BC\) tại S'. CMR: SS'+II'+KK'=HA

0
5 tháng 3 2018

1) Ta có \(M=\left|x+1\right|+\left|2x-10\right|+\left|2x-7\right|+\left|x-\frac{11}{2}\right|\)

\(=\left|x+1\right|+\left|\frac{11}{2}-x\right|+\left|2x-10\right|+\left|7-2x\right|\)

\(\ge\left|\frac{13}{2}\right|+\left|-3\right|=\frac{19}{2}\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}\left(x+1\right)\left(\frac{11}{2}-x\right)\ge0\\\left(2x-10\right)\left(7-2x\right)\ge0\end{cases}}\Leftrightarrow\frac{7}{2}\le x\le5\)

5 tháng 3 2018

Em hay tách ra thành các bài khác nhau nhé.

16 tháng 3 2020

Trên tia đối của tia AH lấy điểm I sao cho AI = BC. Tia đối của tia CB là Cx

K là giao điểm của BI và CE

Ta thấy \(\widehat{ECx}=\widehat{HAC}\)(cùng phụ với \(\widehat{ACH}\))

\(\Rightarrow\widehat{IAC}=\widehat{BCE}\)(cùng kề bù với hai góc bằng nhau)

Xét \(\Delta IAC\)và \(\Delta BCE\)có:

     AI = CB (theo cách chọn điểm phụ)

    \(\widehat{IAC}=\widehat{BCE}\left(cmt\right)\)

    AC = CE (gt)

Do đó \(\Delta IAC=\Delta BCE\left(c-g-c\right)\)

\(\Rightarrow\widehat{ICA}=\widehat{BEC}\)(hai góc tương ứng)

Mà \(\widehat{ICA}+\widehat{ICE}=90^0\left(=\widehat{ACE}\right)\)nên \(\widehat{BEC}+\widehat{ICE}=90^0\)

\(\Rightarrow\Delta CKE\)vuông tại K\(\Rightarrow\widehat{CKE}=90^0\Rightarrow BE\perp IC\)

Tương tự ta có \(CD\perp BI\)

\(\Rightarrow IH,CD,BE\)đồng quy (ba đường cao trong \(\Delta IBC\))

Mà \(IH\equiv AH\Rightarrow AH,CD,BE\)đồng quy

Vậy \(AH,CD,BE\)đồng quy (đpcm)

28 tháng 6 2019

Đề là \(\Delta ABD,\Delta ACE\) vuông cân tại B và C hả?Nếu ko thì sai đề nhé.vẽ hình ra là bt ngay.Nếu đúng như t nói thì chờ tí khoảng chiều nay t ans cho

28 tháng 6 2019

a.

Theo tính chất góc ngoài của tam giác,ta có:
\(\widehat{KAB}=\widehat{ABH}+\widehat{BHA}=\widehat{ABH}+90^0\)

Mà \(\widehat{DBC}=\widehat{DBK}+\widehat{KBC}=90^0+\widehat{KBC}\)

\(\Rightarrow\widehat{KAB}=\widehat{DBC}\)

Xét  \(\Delta ABK\) và  \(\Delta BCD\) có:

\(AB=BD\)

\(\widehat{KAB}=\widehat{DBC}\left(cmt\right)\)

\(BC=AK\)

Khi đó \(\Delta ABK=\Delta BCD\left(c.g.c\right)\)

b.

Do \(\Delta ABK=\Delta BCD\left(c.g.c\right)\) nên \(\widehat{BKA}=\widehat{DCB}\left(2\right)\)

Mặt khác \(\widehat{HBK}+\widehat{KBH}=90^0\left(1\right)\)

Gọi giao điểm của KB và DC là F.

Từ (1);(2) suy ra \(\widehat{FBC}+\widehat{BCF}=90^0\Rightarrow\widehat{F}=90^0\)

\(\Rightarrow CD\perp BK\)

Chứng minh tương tự ta cũng có được  \(BE\perp CK\) 

Nếu bạn ko muốn dùng phép tương tự thì bạn  chứng minh \(\Delta KAC=\Delta BCE\left(c.g.c\right)\) 

\(\Rightarrow\widehat{ACK}=\widehat{CEB}\)

Gọi giao điểm của BE và CK là N.

Mà \(\widehat{ACK}+\widehat{NCE}=90^0\Rightarrow\widehat{NCE}+\widehat{NEC}=90^0\Rightarrow\widehat{N}=90^0\)

\(\Rightarrow BE\perp CK\)

c.

Xét \(\Delta KBC\) có 3 đường cao  \(AH,BE,CD\) nên chúng đồng quy.

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0
4 tháng 3 2018

làm kỷ niệm bạn câu 1 (làm chân phương)

\(M=\left|x+1\right|+2\left|x-5\right|+\left|2x-7\right|+\left|\dfrac{x-11}{2}\right|\)

\(2M=\left|2x+2\right|+\left|4x-14\right|+\left|4x-20\right|+\left|x-11\right|\)

\(\left\{{}\begin{matrix}x< -1;M_1=\left(-2x-2\right)+\left(-4x+14\right)+\left(-4x+20\right)+\left(-x+11\right)=-11x+43\\-1\le x< \dfrac{7}{2};M_2=\left(2x+2\right)+\left(-4x+14\right)+\left(-4x+20\right)+\left(-x+11\right)=-7x+47\\\dfrac{7}{2}\le x< 5;M_3=\left(2x+2\right)+\left(4x-14\right)+\left(-4x+20\right)+\left(-x+11\right)=x+19\\5\le x< 11;M_4=\left(2x+2\right)+\left(4x-14\right)+\left(4x-20\right)+\left(-x+11\right)=9x-21\end{matrix}\right.\)

\(11\le x;M_5=\left(2x+2\right)+\left(4x-14\right)+\left(4x-20\right)+\left(x-11\right)=11x-43\)

Min =Min[M1;M2;M3;M4;M5]

M1 ; M2 không có min

min M3 =M(7/2) =7/2+19 =45/2

min M4 =M(5) =9.5 -21 =24

Min M5 =M(11) =11.11-43=78

=> GTNN M =\(2.M_3=45\)

Ta chứng minh \(1^3+2^3+...+n^3=\left(1+2+..+n\right)^2\)

Đặt \(A=1^3+2^3+...+n^3\)

Với n=1\(\Rightarrow A\) đúng

Giả sử n=k đúng

\(\Rightarrow A=\left(1+2+...+k\right)^2\)

Cần cm \(n=k+1\) đúng

Thật vậy ta có:\(A=1^3+2^3+...+k^3+\left(k+1\right)^3\)

\(A=\left(1+2+...+k\right)^2+\left(k+1\right)^3\)(1)

Cần cm:\(\left(k+1\right)^3=2\left(k+1\right)\left(1+2+...+k\right)+\left(k+1\right)^2\)

\(\Leftrightarrow\left(k+1\right)^2\left(k+1-1\right)=2\left(k+1\right)\cdot\dfrac{k\left(k+1\right)}{2}\)

\(\Leftrightarrow\left(k+1\right)^2k=\left(k+1\right)^2k\)(luôn đúng)

\(\Rightarrow\left(1\right)\) đúng \(\Rightarrowđpcm\)

Vậy \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\)