Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\Delta A'B'C'~\Delta A"B"C"\)theo tỉ số đồng dạng \(k_1\Rightarrow A'B'=k_1A"B"\)
\(\Delta A"B"C"~\Delta A'B'C\)theo tỉ số \(k_2=>A"B"=k_2A"B"=>AB=\frac{A"B"}{k_2}\)
từ đó suy ra
\(\frac{A'B'}{AB}=\frac{k_1A"B"}{\frac{A"B"}{k_2}}=k_1k_2\Leftrightarrow\Delta A'B'C~\Delta ABC\)theo tỉ số \(k_1k_2\)
bạn tham khảo câu c) phần trả lời của mình ở https://hoc24.vn/hoi-dap/question/197610.html
Bài 1:
Để ΔABC=ΔDEF thì AB=EF; AC=DF
hoặc cũng có thể là BC=EF và \(\widehat{B}=\widehat{E}\)
Bài 2:
a: Xét ΔABH vuông tại H và ΔA'B'H' vuông tại H' có
\(\widehat{B}=\widehat{B'}\)
Do đó: ΔABH\(\sim\)ΔA'B'H'
b: AH/A'H'=AB/A'B'=k
\(\text{Giả sử ∆A’B’C’ ∽ ∆ABC theo tỉ số k, AM, A’M’ là hai đường trung tuyến tương ứng.}\)
\(\text{∆A’B’C’ ∽ ∆ABC}\)
\(\Rightarrow\widehat{B}=\widehat{B'}\) (1)
và \(\frac{A'B'}{AB}=\frac{B'C'}{BC} \)(2)
\(\text{mà B’C’ = 2B’M’, BC = 2BM}\)(3)
\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\Delta A'B'M'\)\(\text{đồng dạng }\)\(\Delta ABM\)
\(\Rightarrow\frac{A'M'}{AM}=\frac{A'B'}{AB}=k\)
tg ABC đồng dạng tg DEF <=> \(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}=\frac{2}{3}\)
\(\Rightarrow\left\{\begin{matrix}DE=\frac{3AB}{2}\\DF=\frac{3AC}{2}\\EF=\frac{3BC}{2}\end{matrix}\right.\)
\(\Rightarrow DE+DF+EF=\frac{3}{2}\left(AB+AC+BC\right)=\frac{3}{2}\cdot30=45\left(cm\right)\)
Vậy \(C_{DEF}=45\left(cm\right)\)