\(\Delta ABC\). Điểm D \(\in\)cạnh BC . Kẻ ĐỂ song song Ắ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì DF // AE ﴾DF//AB; E thuộc AB﴿

nên AEF=EFD﴾2 góc so le trong﴿

Hay AEI=IFD﴾ I thuộc EF﴿

Xét tam giác AEI và tam giác DFI có

: AEI=IFD﴾c/m trên﴿

IE=IF﴾I là trung điểm của EF﴿

AIE=DIF ﴾2 gócđối đỉnh﴿

=>tam giác tam giác AEI = tam giác DFI

=> IA=IB﴾ 2 cạnh tương ứng﴿. Mà I nằm giữa A và D => I là trung điểm của AD

NHỚ TK MK NHA

24 tháng 11 2017
GT △ABC,DB=DA,DG//BC,GH//AB
KL △△△△△△△△△△△△△△

20 tháng 4 2020

Bạn tự vẽ hình nha!!!

a.)Xét\(\Delta ABD\)\(\Delta ABM\)có:

            \(AD=BM\)

            \(AB:\)Chung

           \(\widehat{DAB}=\widehat{ABM}\left(slt\right)\)

\(\Rightarrow\Delta ABD=\Delta BAM\)

b.)Ta có:\(\Delta ABD=\Delta BAM\)(Theo a)

    \(\Rightarrow\widehat{DBA}=\widehat{BAM}\)(mà 2 góc SLT)

\(\Rightarrow AM//BD\)

c.)Xét\(\Delta ADI\)\(\Delta IMC\)có:

    \(AD=CM\)

   \(\widehat{DAI}=\widehat{IMC}\)

    \(AI=IM\)

\(\Rightarrow\Delta AID=\Delta IMC\)

\(\Rightarrow IA=IC\)

\(\Rightarrow I\)là trung điểm của\(AC\)

\(\Rightarrow I,A,C\)thẳng hàng(đpcm)

P/s:#Study well#

12 tháng 12 2018

Hình thì chú tự vẽ nhá 

d) Xét tam giác AEF có AE = AF ( chứng minh phần c ) nên tam giác AEF cân tại A

Nên \(\widehat{AEF}=\widehat{AFE}=\frac{180^o-\widehat{EAF}}{2}\)

Xét \(\Delta BNE\)và \(\Delta CIF\)có :

\(\widehat{BNE}=\widehat{CIF}=90^o;BE=CF;\widehat{AEF}=\widehat{AFE}\)

Khi đó \(\Delta BNE=\Delta CIF\)( cạnh huyền góc nhọn )

Nên \(NE=IF\)(hai cạnh tương ứng )

Ta có \(AN+NE=AE;AI+IF=AF\)mà \(AE=AF;NE=IF\)nên \(AN=AI\)

Xét tam giác ANI có AN = AI nên tam giác ANI cân tại A nên \(\widehat{ANI}=\widehat{AIN}=\frac{180^o-\widehat{NAI}}{2}\)

Khi đó \(\widehat{ANI}=\widehat{AEF}=\frac{180^o-\widehat{EAF}}{2}\)mà hai góc này nằm ở vị trí đồng vị của NI và EF cắt bởi AE nên theo dấu hiệu nhận biết hai đường thẳng song song ta có \(NI//EF\)

Vậy....

13 tháng 12 2018

A E F B C M N I

a) Xét ha tam giác ABM và ACM có:

\(\hept{\begin{cases}BM=MC\left(gt\right)\\AM:chung\\AB=AC\left(gt\right)\end{cases}\Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)}\)

b) Ta có: AB = AC => tam giác ABC cân tại A

   Tam giác cân ABC có AM là đường trung tuyến

    Nên cũng đồng thời là đường cao

Suy ra: AM vuông góc với BC

c) Ta có: Tam giác ABC cân tại A => \(\widehat{ABM}=\widehat{ACM}\)

    Mà \(\widehat{ABM}+\widehat{ABE}=180^0\)

           \(\widehat{ACM}+\widehat{ACF}=180^0\)

Suy ra: \(\widehat{ABE}=\widehat{ACF}\)

Xét hai tam giác ABE và ACF có:

   \(\hept{\begin{cases}BE=CF\\\widehat{ABE}=\widehat{ACF}\\AB=AC\end{cases}\Rightarrow\Delta ABE}=\Delta ACF\left(c-g-c\right)\)

d) Ta có: AE = AF (cmt)

=> Tam giác AEF cân tại A

Suy ra: \(\widehat{AFE}=\widehat{AEF}=\frac{180^0-\widehat{EAF}}{2}\) (1)

Xét hai tam giác vuông BNE và CIF: \(\hept{\begin{cases}BE=CF\\\widehat{E}=\widehat{F}\end{cases}\Rightarrow\Delta BNE=\Delta CIF}\) (cạnh huyền -góc nhọn)

                                                                                => NE = IF

Ta có: AE = AF (Gt); NE = IF (cmt)

=> AE - NE = AF - IF

=> AN         =   AI

=> Tam giác ANI cân tại I

Suy ra: \(\widehat{ANI}=\widehat{AIN}=\frac{180^0-\widehat{EAF}}{2}\) (2)

Từ (1) và (2) suy ra: \(\widehat{AIN}=\widehat{AFE}\)

Mà hai góc này ở vị trí đồng vị

Nên NI // EF

       

         

23 tháng 2 2020
https://i.imgur.com/guCzCv2.jpg
Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
25 tháng 12 2018

???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

25 tháng 12 2018

a, xét tam giác aec và tam giác aed có

ae chung

ec=ed(gt)

ac=ad(gt)

=>tam giác aec = tam giác aed(ccc)

b. từ cma ta có tam giác aec = tam giác aed

=>góc cae=góc dac(2 góc tg ứng)

xét tam giác cai và tam giác dai có

ca=da(gt)

góc cae=góc dac(cmt)

ai chung

=>tam giác cai =tam giác dai(cgc)

=>ci=di(2 cạnh tg ứng)