\(\Delta ABC\) đều. H là trung điểm của BC. Trên cạnh AB lấy điểm D, trên tia đối của...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

Lời giải:

a)

Xét tam giác $ABH$ và $ACH$ có:
\(AB=AC\) do tam giác $ABC$ đều

\(BH=CH=\frac{BC}{2}\)

\(AH\) chung

\(\Rightarrow \triangle ABH=\triangle ACH(c.c.c)\)

b) Vì tam giác $ABC$ đều nên \(\widehat{DBM}=\widehat{ACH}\)

\(\widehat{ACH}=\widehat{ECN}\) (đối đỉnh)

\(\Rightarrow \widehat{DBM}=\widehat{ECN}\)

Xét 2 tam giác vuông $BDM$ và $CEN$ có:

\(\left\{\begin{matrix} BD=CE\\ \widehat{DBM}=\widehat{ECN}\end{matrix}\right.\Rightarrow \triangle BDM=\triangle CEN(ch-gn)\)

\(\Rightarrow DM=EN\)

Lại có: \(DM\parallel EN\) (cùng vuông góc với BC)

\(\Rightarrow \widehat{MDI}=\widehat{NEI}\) ( so le trong)

Xét tam giác $MDI$ và $NEI$ có:

\(\widehat{MDI}=\widehat{NEI}(cmt)\)

\(DM=EN\)

\(\widehat{DMI}=\widehat{ENI}=90^0\)

\(\Rightarrow \triangle MDI=\triangle NEI(g.c.g)\Rightarrow DI=EI\), do đó $I$ là trung điểm của $DE$

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

c) Vì $I$ là trung điểm của $DE$ (đã chứng minh ở phần b)

\(KI\perp DE\) nên $KI$ là đường trung trực của $DE$

Do đó: \(KD=KE\)

Mặt khác: Vì theo phần a, \(\triangle AHB=\triangle AHC\Rightarrow \widehat{AHB}=\widehat{AHC}\)

\(\widehat{AHB}+\widehat{AHC}=180^0\Rightarrow \widehat{AHB}=\widehat{AHC}=90^0\)

Do đó: \(AH\perp BC\) hay $KH\perp BC$

Mà $H$ là trung điểm $BC$ nên $KH$ là đường trung trực của $BC$

Do đó: \(KB=KC\)

Xét tam giác $BDK$ và $CEK$ có:

\(BD=CE\) (giả thiết)

\(BK=CK\) (cmt)

\(DK=EK\) (cmt)

\(\Rightarrow \triangle BDK=\triangle CEK(c.c.c)\)

\(\Rightarrow \widehat{DBK}=\widehat{ECK}\)

Lại thấy: \(\widehat{DBK}=\widehat{ABK}=\widehat{ACK}\) (dễ thấy do \(\triangle ABK=\triangle ACK(c.c.c)\) ))

Do đó: \(\widehat{ECK}=\widehat{ACK}\) . Hai góc này lại là 2 góc bù nhau nên mỗi góc bằng $90^0$

\(\Rightarrow AC\perp CK\) (đpcm)

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

20 tháng 1 2020

A B C D E M N I 1 2 1

(Hình ảnh chỉ mang tính chất minh họa)

a, Ta có: \(\Delta ABC\) cân tại \(A\)

\(\Rightarrow\widehat{B1}=\widehat{C2}\left(1\right)\)

Mà: \(\widehat{C2}=\widehat{C1}\left(đ.đỉnh\right)\left(2\right)\)

Từ: \(\left(1\right)\left(2\right)\Rightarrow\widehat{B1}=\widehat{C1}\)

Xét \(\Delta MDB\) và \(\Delta NCE\) vuông tại \(D;E\) có:

\(BD=CE\left(gt\right)\)

\(\widehat{B1}=\widehat{C1}\left(cmt\right)\)

\(\Rightarrow\Delta MDB=\Delta NEC\left(cgv-gnk\right)\)

\(\Rightarrow MD=NE\left(2c.t.ứng\right)\)

b, Ta có: \(\hept{\begin{cases}MD\perp BE\\NE\perp BE\end{cases}\Rightarrow MD//NE}\)

\(\Rightarrow\widehat{ENI}=\widehat{DMI}\left(so-le-trong\right)\)

Xét \(\Delta IMD\) và \(\Delta INE\)  vuông tại \(D;E\) có:

\(DM=EN\left(cmt\right)\)

\(\widehat{IMD}=\widehat{INE}\left(cmt\right)\)

\(\Rightarrow\Delta MID=\Delta NIE\left(cgv-gnđ\right)\)

\(\Rightarrow ID=IE\left(2c.t.ứ\right)\)

\(\Rightarrow I\) là trung điểm của \(DE\left(đpcm\right)\)

P/s: Sửa đề câu a, Chứng minh \(MD=NE\)

20 tháng 1 2020

Sửa đề câu a thành : Chứng minh: MD = NE

ABCDINEM==

   GT  

 △ABC (AB = AC). D \in BC ; BD = CE

 DM ⊥ BC (M \in AB) ; EN ⊥ BC 

 MN ∩ DE = { I } 

   KL

 a, MD = ME

 b, ID = IE

Bài giải:

a, Vì △ABC có AB = AC => △ABC cân tại A => ABC = ACB

Mà ACB = ECN (2 góc đối đỉnh)

=> ABC = ECN

Xét △MDB vuông tại D và △NEC vuông tại E

Có: MBD = NCE (cmt)

          BD = EC (gt)

=> △MDB = △NEC (cgv-gnk)

=> MD = NE (2 cạnh tương ứng)

b, Xét △MDI vuông tại D có: DMI + MID = 90o   

Xét △IEN vuông tại E có: INE + EIN = 90o

Mà  MID = EIN (2 góc đối đỉnh)

=> DMI = INE

Xét △MDI vuông tại D và △NEI vuông tại E

Có: MD = NE (cmt)

      DMI = INE (cmt)

=> △MDI = △NEI (cgv-gnk)

=> ID = IE (2 cạnh tương ứng)

Và I nằm giữa D, E

=> I là trung điểm của DE

13 tháng 7 2019

A B C M N Q P O R S T A B C H M D I A B C D K G M K E P F (Hình a) (Hình b) (Hình c) Q I

Bài toán 1: (Hình a)

Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.

Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR

Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS

Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)

\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)

Dễ thấy NS là đường trung bình của  \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)

Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)

Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ

=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).

Bài toán 2: (Hình b)

Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)

=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC

Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI

=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).

Bài toán 3: (Hình c)

a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.

Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC

Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD

Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)

=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng

=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM

Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E

=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)

=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).

b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE

Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).

23 tháng 5 2018

a )

ta có : \(\widehat{C_1}=\widehat{C_2}\) ( 2 góc đối đỉnh ) 

mà \(\widehat{C_1}=\widehat{B}\) ( tam gíac ABC cân tại A ) 

Do do : \(\widehat{C_2}=\widehat{B}\)

xét \(\Delta ABDva\Delta ICE,co:\)

AB = AC = IC ( gt ) 

BD=CE ( gt )

\(\widehat{C_2}=\widehat{B}\) (cmt ) 

Do do : \(\Delta ABD=\Delta ICE\left(c-g-c\right)\)