\(\Delta ABC\). D là trung điểm của AB. Đường thẳng qua D song song với BC cắt AC tại...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2022

a: Xét tứ giác BDEF có

BD//EF

DE//BF

Do đó: BDEF là hình bình hành

=>EF=BD=AD
b: Xét ΔADE và ΔEFC có

AD=EF
góc ADE=góc EFC

DE=FC

Do đó: ΔADE=ΔEFC

c: Xét ΔABC có

D là trung điểm của AB

DE//BC

Do đó: E là trung điểm của AC

=>EA=EC

d: Xét ΔABC có AD/AB=AE/AC

nên DE//BC và DE=BC/2

 

31 tháng 7 2017

A B C D E F

* Xét tam giác BDE và tam giác EFB có:

+) \widehat{DEB} = \widehat{EBF} ( so le trong)

+) BE chung

+) \widehat{FEB} = \widehat{DBE} ( so le trong)

=> Tam giác BDE = tam giác EFB ( g.c.g )

=> EF = BD ( 2 cạnh tương ứng)

* Mà AD = BD ( D là trung điểm của AB)

=> EF = AD. ( cpcm)

21 tháng 10 2016
a,Xét tam giác CEF và tam giác FBD co

DF la canh chung

góc EDF = góc DFB ( 2 góc so le trong của DE//BC)

góc BDF = Góc EDF( 2 góc so le trong của EF//AB)

=> tam giác CEF= tam giác FBD (g.c.g)

=>EF = DB ( 2 cạnh tương ứng)

mà BD= AD ( D la trung diem cua AB)

=> EF= AD(dpm)

b, ta có
  • goc BDF + goc FDE + gocEDA=180
  • goc BFD + goc DFE+goc EFC=180

mà goc BDF=goc EFD (chứng minh trên: cmt)

goc FDE= goc DBF (cmt)

=> goc EDA= goc EFC

Xét tam giác ADE và tam giác EFC có

EF=AD(cmt))

góc EDA = EFC ( cmt)

góc FEC= góc EAD ( 2 góc đồng vị của EF//AB)

=> tam giác ADE = tam giác EFC ( dpcm)

c, Vi tam giác ADE= tam giác EFC

=> AE=EC( 2 cạnh tương ứng)

3 tháng 1 2017

a) xét \(\Delta BDF,\Delta EFD:\)

DF chung

\(\widehat{BDF}=\widehat{EFD}\) ( 2 góc so le trong do AB // EF )

\(\widehat{EDF}=\widehat{BFD}\) ( 2 góc so le trong do DE // BC )

\(\rightarrow\Delta BDF=\Delta EFD\left(g.c.g\right)\)

\(\Rightarrow BD=EF\) ( 2 cạnh tương ứng )

mà AD = BD ( D là trung điểm AB

BD = FE

\(\rightarrow AD=EF\)

b) ta có :

\(\widehat{ADE}=\widehat{DBF}\) ( 2 góc đồng vị do DE // BC )

\(\widehat{DBF}=\widehat{EFC}\) ( 2 góc đồng vị do AB // EF )

\(\rightarrow\widehat{ADE}=\widehat{EFC}\)

xét \(\Delta ADE,\Delta EFC:\)

EF = AD ( cmt )

\(\widehat{ADE}=\widehat{EFC}\) ( cmt )

\(\widehat{DAE}=\widehat{FEC}\) ( 2 góc đồng vị do EF // AD )

\(\Rightarrow\Delta ADE=\Delta EFC\left(g.c.g\right)\)

c) vì : \(\Delta ADE=\Delta EFC\) ( theo câu b )

\(\rightarrow AE=EC\) ( 2 cạnh tương ứng )

19 tháng 8 2016

các bạn vẽ hình nữa nha

 

23 tháng 1 2018

co ai ta loi cho mik voi

2 tháng 3 2018

Em tham khảo tại đây nhé.

Câu hỏi của ngdinhthaihoang123 - Toán lớp 7 - Học toán với OnlineMath

4 tháng 5 2018

vì AM là tia phân giác đồng thời là tia phân giác của \(\widehat{DAE}\)

⇒ΔADE cân tại E
\(\widehat{D}=\widehat{AED}\)(1)

vì BF \\ CA ( GT )

\(\widehat{BFD}=\widehat{AED}\)(2 góc đồng vị bằng nhau)(2)

từ (1) và (2) ⇒ \(\widehat{D}=\widehat{AFD}\)

⇒ΔBDF cân tại B

tui ko quen kẻ hình trên máy tính bucqua

4 tháng 5 2018

vì AC \\ BF (câu a)

\(\widehat{FBM}=\widehat{ECM}\)(2 góc so le trong)

xét ΔBMF và ΔCME có

\(\widehat{FBM}=\widehat{ECM}\)(CMT)

\(\widehat{BMF}=\widehat{CME}\)(2 góc đối đỉnh)

BM = MC(M là trung điểm của BC)

⇒ΔBMF=ΔCME(G.C.G)

⇒EM=FM(2 cạnh tương ứng)

⇒M là trung điểm của FE

29 tháng 1 2019

a) Nối D và F ta có :

Xét tam giác BDF và tam giác FDE ta có :
DF là cạnh chung

Góc BDF = góc DFE ( vì AB // EF )

GócDFB = góc FDE ( vì DE // BC )

=>tam giác BDF = tam giác FDE(g.c.g)

=>DB = EF ( hai cạnh tương ứng )

Mà AD = DB => AD = EF.

b) Xét tam giác ADE và tam giác EFC ta có:

Góc A = góc FEC ( vì AB // EF )

AD = EF (theo câu a)

Góc ADE = góc EFC ( cùng bằng góc B)

=>tam giác ADE = tam giác EFC(g.c.g)

c) Theo câu b ta có:tam giác ADE = tam giác EFC

=> AE = EC ( hai cạnh tương ứng)