\(\Delta ABC,\) có \(\widehat{A}=60\) độ, và
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

A M B C N D x y

a) Vì \(\widehat{AMx}=\widehat{B}\), hai góc này ở vị trí đồng vị nên Mx // BC.

Giả sử Mx không cắt AC. Suy ra Mx // AC. Mx // AC, Mx // BC nên AC // BC(mâu thuẫn với giả thiết ABC là tam giác). Vậy Mx cắt AC

b) Vì \(\widehat{CNy}=\widehat{C}\), hai góc này ở vị trí so le trong nên Ny // BC.

Ny // BC, Mx // BC nên Mx // Ny.

Giúp mình nhanh với, mình cần gấp:1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.a) Tính \(\widehat{ACB}\)b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.2. Cho tam giác ABC có...
Đọc tiếp

Giúp mình nhanh với, mình cần gấp:

1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.

a) Tính \(\widehat{ACB}\)

b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;

c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.

2. Cho tam giác ABC có AB = AC. Trên nửa mặt phẳng bờ AB không chứa C lấy M sao cho \(\widehat{BAM}\) = \(\widehat{ABC}\) và AM = AB. Trên nửa mặt phẳng bờ AC không chứa B lấy N sao cho \(\widehat{CAN}\) =  \(\widehat{ACB}\)và AN =AC. Từ A vẽ đường thẳng d vuông góc với BC.

Chứng minh: Đường thẳng d là đường trung trực của đoạn thẳng MN.

( Có vẽ hình nhé. Cảm ơn nhiều ạ!)


 

0
Giúp mình nhanh với, mình cần gấp:1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.a) Tính \(\widehat{ACB}\)b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.2. Cho tam giác ABC có...
Đọc tiếp

Giúp mình nhanh với, mình cần gấp:

1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.

a) Tính \(\widehat{ACB}\)

b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;

c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.

2. Cho tam giác ABC có AB = AC. Trên nửa mặt phẳng bờ AB không chứa C lấy M sao cho \(\widehat{BAM}\) = \(\widehat{ABC}\) và AM = AB. Trên nửa mặt phẳng bờ AC không chứa B lấy N sao cho \(\widehat{CAN}\) =  \(\widehat{ACB}\)và AN =AC. Từ A vẽ đường thẳng d vuông góc với BC.

Chứng minh: Đường thẳng d là đường trung trực của đoạn thẳng MN.

( Có vẽ hình nhé. Cảm ơn nhiều ạ!)

1
13 tháng 10 2020

là oxy=7

Giúp mình nhanh với, mình cần gấp:1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.a) Tính \(\widehat{ACB}\)b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.2. Cho tam giác ABC có...
Đọc tiếp

Giúp mình nhanh với, mình cần gấp:

1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.

a) Tính \(\widehat{ACB}\)

b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;

c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.

2. Cho tam giác ABC có AB = AC. Trên nửa mặt phẳng bờ AB không chứa C lấy M sao cho \(\widehat{BAM}\) = \(\widehat{ABC}\) và AM = AB. Trên nửa mặt phẳng bờ AC không chứa B lấy N sao cho \(\widehat{CAN}\) =  \(\widehat{ACB}\)và AN =AC. Từ A vẽ đường thẳng d vuông góc với BC.

Chứng minh: Đường thẳng d là đường trung trực của đoạn thẳng MN.

( Có vẽ hình nhé. Cảm ơn nhiều ạ!)

1
13 tháng 10 2020

hệ mày

1 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Nguyễn Hoàng Giang - Toán lớp 7 - Học toán với OnlineMath

17 tháng 1 2019

bạn kham khảo tại link dưới đây nhé.

câu hỏi của Nguyễn Hoàng Giang - Toán lớp 7 - Học toán với OnlineMath

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)d)Hãy...
Đọc tiếp

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)

a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)

b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.

c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)

d)Hãy cho biết khẳng định\("\)nếu \(\widehat{BAC}=\frac{\widehat{AMC}+\widehat{BMC}+\widehat{AMB}}{6}\)thì điểm \(M\)cách đều các cạnh của \(\Delta ABC\)\("\)có đúng không?Vì sao?

e)Trên một nửa mặt phẳng có chứa điểm \(C\) bờ \(AB,\)vẽ  tam giác đều \(ABF.\)Giả sử rằng \(\widehat{BAC}=\widehat{ACB}+\widehat{ABC}\)và \(AB=\frac{1}{2}BC,\)chứng minh \(F\)là trung điểm của \(BC.\)

3
26 tháng 5 2017

bài này khó nhất là hai câu a và c.

26 tháng 5 2017

a) Ta có \(\Delta ADC=\Delta ABE\) (c-g-c) => \(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 c t/ứ )

Gọi giao điểm của AB và CD là K

Ta có: \(\widehat{ADK}+\widehat{AKD}+\widehat{DAK}=180^0\) (Đl Py-ta-go)

\(\widehat{BMK}+\widehat{BKM}+\widehat{KBM}=180^0\)(Đl Py-ta-go)

\(\Rightarrow\widehat{BMK}=\widehat{KAD}=60^0\)\(\Rightarrow\widehat{BMC}=120^0\)

Gọi J là trung điểm DM

C/m \(\Delta DJB=\Delta AMB\) rồi c/m được \(\widehat{BMA}=120^0\)

rồi suy ra \(\widehat{AMC}=120^0\) \(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\widebat{BMC}\)