Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A B C D E F
Tam giác ABC đều => AB = AC = BC
Mà D , F , E lần lượt là các trung điểm của AB ,BC , CA.
=> AD = AF = FC = CE = BE = BD. (1)
=> góc A = góc B = góc C = 60\(^o\)
=> Tam giác ADF đều vì AD = AF ( cmt) ; góc A = 60\(^o\). (2)
Tương tự, tam giác BDE đều vì BD = BE (cmt); góc B = 60\(^o\) (3)
Tam giác CFE đều vì góc C = 60\(^o\); CF = CE. (cmt).(4)
Từ (1), (2), (3) , (4) => DF = FE = DE.( ĐPCM)
Mình chỉ giải cko bạn 1 bài thôi nha , tại mình đang bận chút!!!!
Chúc bạn học tốt!!!
a, Xét tam giác vuông ABH và tam giác vuông MBH có góc MBH = góc ABH (do BH là phân giác góc B) HB chung => Tam giác vuông ABH = tam giác vuông MBH ( ch - gn )
b, Từ câu a, sẽ có HM = HA ( cạnh tương ứng) => H thuộc trung trực của AM(1) Ta còn có BM = BA ( cạnh tương ứng ) => B thuộc trung trực của AM (2) Từ (1) và (2) suy ra BH là trung trực của AM
c, Xét tam giác BCN có NM vuông góc với BC => NM là đường cao ứng với cạnh BC có CA vuông góc với BN => CA là đường cao ứng với cạnh BN mà chúng giao nhau ở H nên H là trực tâm nên BH là đường cao ứng với cạnh CN => BH vuông góc với CN mà BH còn vuông góc với AM (BH là trung trực của AM) => CN song song với AM
d, Từ câu trên ta đã chứng minh BH vuông góc vói CN
A B C D M N
a) Xét \(\Delta ABC\) có :
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A
Mà có : AD là đường trung tuyến trong tam giác cân
=> AD đồng thời là đường trung trực trong tam giác cân (tính chất tam giác cân)
=> \(AD\perp BC\) (đpcm)
b) Xét \(\Delta ANC\) và \(\Delta AMB\) có :
\(\widehat{A}:chung\)
\(AB=AC\left(gt\right)\)
\(\widehat{ANC}=\widehat{AMB}\left(=90^o\right)\)
=> \(\Delta ANC\) = \(\Delta AMB\) (cạnh huyền - góc nhọn)
=> AN = AM (2 cạnh góc vuông)
Bạn tham khảo câu a ở link này:
Câu hỏi của Nguyễn Tiến Vững - Toán lớp 7 - Học toán với OnlineMath
A B C M N D E
QUA B KẺ BE SONG SONG VỚI NC
TRONG TAM GIÁC AMN CÓ ĐƯỜNG PHÂN GIÁC CỦA GÓC A ĐỒNG THỜI LÀ ĐƯỜNG CAO
=> TAM GIÁC AMN CÂN TẠI A
=> GÓC AMN = GÓC ANM
DO BE SONG SONG VỚI AC
=> GÓC BEM = GÓC ANM
MÀ GÓC ANM = GÓC AMN
=> GÓC AMN = GÓC BEM
=> BE = BM
TA DỄ DÀNG CHỨNG MINH ĐƯỢC TAM GIÁC DBE = TAM GIÁC DCN ( G.C.G)
=> BE = CN
=> BM = CN
TA CÓ AM = AN = X
BM = CN = Y
TA SẼ CÓ :
X + Y = AB = c
X - Y = AC = b
=> X = AM = \(\frac{b+c}{2}\)
=> Y = bm = \(\frac{c-b}{2}\)
( BM CÓ THỂ BẰNG b - c/ 2 phụ thuộc vào AB VÀ AC)
Hình tam giác TenDaGiac1: Polygon A, B, C Đoạn thẳng c: Đoạn thẳng [A, B] của Hình tam giác TenDaGiac1 Đoạn thẳng a: Đoạn thẳng [B, C] của Hình tam giác TenDaGiac1 Đoạn thẳng b: Đoạn thẳng [C, A] của Hình tam giác TenDaGiac1 Đoạn thẳng j: Đoạn thẳng [M, B] Đoạn thẳng k: Đoạn thẳng [M, N] Đoạn thẳng l: Đoạn thẳng [A, H] Đoạn thẳng n: Đoạn thẳng [B, K] A = (0.24, 5.9) A = (0.24, 5.9) A = (0.24, 5.9) B = (-1.84, 2.22) B = (-1.84, 2.22) B = (-1.84, 2.22) C = (6.84, 2) C = (6.84, 2) C = (6.84, 2) Điểm D: Trung điểm của a Điểm D: Trung điểm của a Điểm D: Trung điểm của a Điểm M: Giao điểm của h, i Điểm M: Giao điểm của h, i Điểm M: Giao điểm của h, i Điểm N: Giao điểm của h, b Điểm N: Giao điểm của h, b Điểm N: Giao điểm của h, b Điểm H: Giao điểm của g, k Điểm H: Giao điểm của g, k Điểm H: Giao điểm của g, k Điểm K: Giao điểm của m, k Điểm K: Giao điểm của m, k Điểm K: Giao điểm của m, k
Bài của Hiếu viết sai tên điểm. Cô trình bày bài này như sau:
Kẻ BK // AC ( K thuộc MN)
Đặt H là giao điểm của phân giác trong góc A và MN.
Khi đó ta dễ dàng chứng minh được \(\Delta BDK=\Delta CDN\left(g-c-g\right)\Rightarrow BK=CN\left(1\right)\)
Xét tam giác AMN có AH là phân giác đồng thời đường cao nên nó là tam giác cân hay \(\widehat{AMN}=\widehat{ANM}\)
Lại do BK // AC nên \(\widehat{ANM}=\widehat{BKM}\) (đồng vị)
Vậy \(\widehat{AMN}=\widehat{BKM}\) hay tam giác BKM cân tại B. Suy ra BM = BK (2)
Từ (1) và (2) suy ra BM = CN
Ta thấy AM = AB + BM = c + BM
AN = AC - NC = b - NC
Cộng từng vế ta có : AM + AN = b + c hay 2AM = b + c
Vậy \(AM=\frac{b+c}{2}\)
Khi đó MB = AM - AB \(=\frac{b+c}{2}-c=\frac{b-c}{2}\) ( Với trường hợp b > c và ngược lại)
a: Xét ΔABM vuông tại A và ΔHBM vuông tại H có
BM chung
\(\widehat{ABM}=\widehat{HBM}\)
Do đó: ΔBAM=ΔBHM
b: Tacó: BA=BH
MA=MH
Do đó: BM là đừog trung trực của AH