\(\Delta ABC\) có góc \(A=90^o\), \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề; HD vuông góc với AB tại D

a: Xét tứ giác ADHE có góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

=>AH=DE

b: Sửa đề: AM vuông góc với DE

Ta có: ΔABC vuông tại A
mà AM là trung tuyến

nên MA=MC

=>góc MAC=góc MCA

Vì ADHE là hình chữ nhật nên góc AED=góc AHD=góc ABC

=>góc AED+góc MAC=90 độ

=>AM vuông góc với DE

c: góc EDN=góc EDH+góc NDH

=góc HAC+góc NHD

=góc HAC+góc BCA

=90 độ

=>ND vuông góc với ED(1)

góc KED=góc KEH+góc DEH

=góc KHE+góc DAH

=góc CBA+góc BAH=90 độ

=>EK vuông góc với ED(2)

Từ (1) và (2) suy ra EK//DN

21 tháng 8 2019

giup mình với mai đi hc rồi

21 tháng 6 2019

A B C D H E I K O

Gọi Q và O lần lượt là giao điểm cuarDH và AB; HE và AC. ( Điểm Q chưa ký hiệu trên hình vì nhỏ quá nhé ).

Ta dễ dàng chứng minh được: tam giác vuông KHO = tam giác vuông KEO ( hai cạnh góc vuông )

=> \(\widehat{HKO}=\widehat{EKO}\)<=> KO là phân giác ngoài của tam giác IKH ( 1 )

Do \(AH\perp BC\)=> HC là phân giác ngoài của tam giác IKH ( 2 )

Mà KO cắt HC tại C ( 3 ). Từ ( 1 ); ( 2 ) và ( 3 ) => IC là phân giác trong của tam giác IKH <=> \(\widehat{HIC}=\widehat{CIK}=\frac{1}{2}\widehat{HIE}\)( * )

Ta dễ dàng chứng minh được : tam giác vuông DIQ = tam giác vuông HIQ ( hai cạnh góc vuông ) => \(\widehat{DIQ}=\widehat{QIH}=\frac{1}{2}\widehat{DIH}\)( # )

Do D; I ; E thẳng hàng ( theo bài ra ) nên \(\widehat{DIH}+\widehat{HIE}=180^o\)( % )

Từ ( * ); ( # ) và ( % ) => \(\widehat{QIH}+\widehat{HIC}=\frac{1}{2}\widehat{DIH}+\frac{1}{2}\widehat{HIE}\Leftrightarrow\widehat{BIC}=\frac{1}{2}\left(\widehat{DIH}+\widehat{HIE}\right)=\frac{1}{2}.180^o=90^o\)

Do hai góc AIC và BIC là hai góc nằm ở vị trí kề bù nên : \(\widehat{AIC}+\widehat{BIC}=180^o\Leftrightarrow\widehat{AIC}=180^o-\widehat{BIC}=180^o-90^o=90^o\)

Tương tự, ta chứng minh được \(\widehat{AKB}=90^o\)Vậy số đo \(\widehat{AIC},\widehat{AKB}\)đều là \(90^o.\)

22 tháng 6 2019

Cám ơn bạn Đỗ Đức Lợi nha !

15 tháng 2 2020

Gọi giao điểm của AM và DE là O

a) Dễ chứng minh ADME là hình chữ nhật => AM = DE

Để ADME là hình vuông thì AM là tia phân giác của ^BAC => M là chân đường phân giác kẻ từ A đến BC

b) Tam giác AHM vuông tại H => HO = AO = MO = DO = EO

Xét tam giác DHE có HO = DO = EO => tam giác DHE vuông tại H => đpcm

c) Ta sẽ chứng minh HK = MN

Theo Talet : \(\frac{HK}{BK}=\frac{AD}{BD}\Rightarrow HK=\frac{BK\cdot AD}{DB}=\frac{BK\cdot ME}{DB}\)

Theo hệ thức lượng tam giác MEC có: \(ME^2=MN.MC\Rightarrow MN=\frac{ME^2}{MC}\)

Ta cần chứng minh: \(\frac{ME^2}{MC}=\frac{BK\cdot ME}{BD}\)

\(\Leftrightarrow\frac{ME}{MC}=\frac{BK}{DB}\)

Lại có tam giác BKD đồng dạng tam giác MNE => \(\frac{BK}{BD}=\frac{MN}{ME}\)

\(\Rightarrow\frac{ME}{MC}=\frac{MN}{ME}\Leftrightarrow ME^2=MC\cdot MN\) ( luôn đúng theo hệ thức lượng )

Do đó ta có HK = MN

<=> HK + HM = MN + HM

<=> KM = HN ( đpcm )

c) đang nghĩ :)

15 tháng 2 2020

thôi ko nghĩ nữa đâu, a bận rồi =)) sorry mấy đứa