Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 tam giác AMB và tam giác ANC có đk gì k, hình như đề bài hơi thếu ^_^
Bạn tự vẽ hình nhé :
a)\(\Delta ABC\)cân tại A có\(\widehat{B}=\widehat{C}\).\(\Delta BMI,\Delta CNI\)lần lượt vuông tại M,N có : BI = CI (I là trung điểm BC) ;\(\widehat{B}=\widehat{C}\)(cmt)
\(\Rightarrow\Delta BMI=\Delta CNI\left(ch-gn\right)\)
b)\(\Delta AIB,\Delta AIC\)có AI chung ; AB = AC (\(\Delta ABC\)cân tại A) ; IB = IC nên\(\Delta AIB=\Delta AIC\left(c.c.c\right)\)
=>\(\widehat{AIB}=\widehat{AIC}\)(2 góc tương ứng) mà\(\widehat{AIB}+\widehat{AIC}=180^0\)(kề bù)\(\Rightarrow\widehat{AIC}=90^0\)
Áp dụng định lí Pi-ta-go vào các tam giác vuông\(\Delta AIC,\Delta AIN,\Delta INC\),ta lần lượt có :
AI2 + IC2 = AC2 ; AN2 = AI2 - IN2 ; NC2 = IC2 - IN2
=> AC2 - AN2 - NC2 = AI2 + IC2 - AI2 + IN2 - IC2 + IN2 = 2IN2
c) BM = CN (2 cạnh tương ứng của\(\Delta BMI=\Delta CNI\)) mà AB = AC
=> AB - BM = AC - CN hay AM = AN => \(\Delta AMN\)cân tại A
A B C I M N
a)\(\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=\widehat{ACB}\left(\widehat{MBI}=\widehat{NCI}\right)\)
Xét \(\Delta BMI\)và\(\Delta CNI:\hept{\begin{cases}\widehat{BMI}=\widehat{CNI}=90^0\\BM=CN\\\widehat{MBI}=\widehat{NCI}\end{cases}\Rightarrow\Delta BMI=\Delta CNI}\)(cạnh huyền góc nhọn)
b) Xét \(\Delta CNI:\widehat{CNI}=90^0\Rightarrow\)\(IN^2=IC^2-CN^2\left(Pytago\right)\left(1\right)\)
\(\Delta AIN:\widehat{INA}=90^0\Rightarrow IN^2=IA^2-AN^2\left(Pytago\right)\left(2\right)\)
Từ (1) và (2)\(\Rightarrow2IN^2=IC^2-CN^2+IA^2-AN^2=IC^2+IA^2-AN^2-NC^2\left(3\right)\)
Xét \(\Delta AIC:\widehat{AIC}=90^0\)(AI là đường trung tuyến và cũng là đường cao)
\(\Rightarrow AI^2+IC^2=AC^2\left(Pytago\right)\left(4\right)\)
Thay (4) vào 93), ta có: \(2IN^2=AC^2-AN^2-NC^2\left(đpcm\right)\)
c) I là trung điểm của BC=> AI là dường trung tuyến. Mà \(\Delta ABC\)cân tại A=> AI cũng là đường phân giác.
\(\Rightarrow\widehat{MAI}=\widehat{NAI}\)
Xét \(\Delta MAI\)và \(\Delta NAI:\hept{\begin{cases}\widehat{AMI}=\widehat{ANI}=90^0\\AI\\\widehat{MAI}=\widehat{NAI}\end{cases}\Rightarrow\Delta MAI=\Delta NAI}\)(cạnh huyền góc nhọn)
\(\Rightarrow AM=AN\Rightarrow\Delta AMN\)cân tại A.
Giải hơi muộn nhưng các bạn nhớ nha.
a và b. Xét tam giác ABD và ACE
 (chung)
AB = AC
Suy ra tam giác ABD = tam giác ACE ---> AE = AD
Vậy tam giác AED là tam giác cân.
c)Xin lỗi nha mình không giải được
d) Ta có CD vuông góc với BK. vậy CD là đường cao của tam giác CBK mà BD = DK do đó đường cao trùng với đường trung trực. Suy ra tam giác cân ---> DKC = DBC
Mà góc ACE = ABD. Vậy suy ra góc ECB = DBC mà DBC = DKC --> ECB = DKC.