Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AD là đường cao nên AD < AB (Quan hệ giữa đường vuông góc và đường xiên)
\(\Rightarrow\frac{1}{AD}>\frac{1}{AB}\)
Chứng minh tương tự:
\(\frac{1}{BE}>\frac{1}{BC};\frac{1}{CF}>\frac{1}{BC}\)
Cộng tương ứng 2 vế của các bất phương trình ta có điều phải chứng minh.
\(\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}>\frac{1}{AB}+\frac{1}{AC}+\frac{1}{BC}\left(đpcm\right)\)
H F D E A B C
a) \(\widehat{BFC}=\widehat{BEC}=90o\) => tứ giác BFEC nội tiếp => \(\widehat{AEF}=\widehat{ABC;}\widehat{AFE}=\widehat{ABC}\)=> \(\Delta AEF~\Delta ABC\)
SAEF = \(\frac{1}{2}AE.AF.sinA\); SABC = \(\frac{1}{2}AB.AC.sinA\)=>\(\frac{S_{AEF}}{S_{ABC}}=\frac{AE.AF}{AB.AC}\)=cos2A (cosA = \(\frac{AE}{AB}=\frac{AF}{AC}\))
b) làm tương tự câu a ta được SBFD=cos2B.SABC; SCED=cos2C.SABC
=> SDEF =SABC-SAEF-SBFD-SCED = (1-cos2A-cos2B-cos2C)SABC
Bài này bọn e đã từng làm rồi, có trong đề thi HSG Toán lớp 8 tỉnh Bắc Giang , anh tham khảo nhé :
Đặt \(BC=a,CA=b,AB=c.\) Độ dài các đường phân giác trong của tam giác kẻ từ các đỉnh A,B,C lần lượt là \(l_a,l_b,l_c\).
a) A B C O D
Ta có: \(\frac{OD}{AD}=\frac{S_{BOC}}{S_{ABC}};\frac{OE}{BE}=\frac{S_{AOC}}{S_{ABC}};\frac{OF}{CF}=\frac{S_{AOB}}{S_{ABC}}\)\(\Rightarrow\frac{OD}{AD}+\frac{OE}{BE}+\frac{OF}{CF}=\frac{S_{BOC}+S_{AOC}+S_{AOB}}{S_{ABC}}\)
\(\Rightarrow\frac{OD}{AD}+\frac{OE}{BE}+\frac{OF}{CF}=\frac{S_{ABC}}{S_{ABC}}=1\left(ĐPCM\right)\)
b) chịu
Đặt \(BC=a;AC=b;AB=c\left(a,b,c>0\right)\)
\(\Delta BCF\)có phân giác trong BI \(\left(I\in CF\right)\)\(\Rightarrow\frac{IF}{IC}=\frac{BF}{BC}\)(1)
\(\Delta ABC\)có phân giác trong CF \(\left(F\in AB\right)\)\(\Rightarrow\frac{BF}{BC}=\frac{AF}{AC}=\frac{BF+AF}{BC+AC}=\frac{AB}{BC+AC}=\frac{c}{a+b}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{IF}{IC}=\frac{c}{a+b}\)
Tương tự, ta có \(\frac{IE}{IB}=\frac{b}{c+a}\); \(\frac{ID}{IA}=\frac{a}{b+c}\)
Từ đó \(\frac{ID}{IA}+\frac{IE}{IB}+\frac{IF}{IC}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Ta cần chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)với \(a,b,c>0\)
Thật vậy: Ta chứng minh bất đẳng thức phụ \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)với \(x,y,z>0\)
Áp dụng bất đẳng thức Cô-si cho 3 số dương \(x,y,z\), ta có: \(x+y+z\ge3\sqrt[3]{xyz}\)
Tương tự, ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)
Từ đó \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)
Vậy bất đẳng thức được chứng minh.
Áp dụng bất đẳng thức trên, ta có: \(\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)
\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}\ge\frac{9}{2}\)
\(\Leftrightarrow1+\frac{c}{a+b}+1+\frac{b}{c+a}+1+\frac{a}{b+c}\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Rightarrow\)đpcm