\(\Delta\) ABC có AB=c; AC=b góc A \(=\alpha\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải:

Kẻ đường cao $BH$ của tam giác $ABC$.

\(S_{ABC}=\frac{BH.AC}{2}(1)\)

Theo công thức lượng giác: \(\sin A=\frac{BH}{AB}\Rightarrow BH=\sin A. AB(2)\)

Từ \((1);(2)\Rightarrow S_{ABC}=\frac{\sin A. AB.AC}{2}=\frac{bc\sin \alpha}{2}\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Hình vẽ:

Violympic toán 8

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải:

Nhớ rằng \(\cos ^2a+\sin ^2a=1\). Ta có:

\(B=(1-\sin ^4a-\cos ^4a)(\tan ^2a+\cot ^2a+2)\)

\(=[1+2\sin ^2a\cos ^2a-(\sin^4a+\cos ^4a+2\sin ^2a\cos ^2a)](\frac{\sin ^2a}{\cos ^2a}+\frac{\cos ^2a}{\sin ^2a}+2)\)

\(=[1+2\sin ^2a\cos ^2a-(\sin ^2a+\cos ^2a)^2].\frac{\sin ^4a+\cos ^4a+2\sin ^2a\cos ^2a}{\cos ^2a\sin ^2a}\)

\(=[1+2\sin ^2a\cos ^2a-1^2].\frac{(\sin ^2a+\cos ^2a)^2}{\cos ^2a\sin ^a}\)

\(=2\sin ^2a\cos ^2a.\frac{1^2}{\cos ^2a\sin ^2a}=2\)

9 tháng 5 2017

a) Xét tam giác ADC và tam giác BEC , có

góc C chung

góc ADC=góc CBE (=90*)

=> tam giác ADC đông dạng với tam giác BEC (g.g)

b) Xét tam giác ABK và tam giác AEK, có

góc BDK = góc AEK (=90*_

góc BKD=AKE ( đối đỉnh)

=> tam giác BDK ~ tam giác AEK (g.g)

=> BK/KD=KE/AK ( tỉ lệ đồng dạng )

=> BK.KE=AK.KD ( đpcm)

 

9 tháng 5 2017

câu c bn ơi

28 tháng 4 2021

Cần ý d :>

a: Xét ΔACH vuông tại H và ΔBCA vuông tại A có

góc C chung

Do đó: ΔACH\(\sim\)ΔBCA

b: \(BC=\sqrt{20^2+15^2}=25\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=12\left(cm\right)\)

a: Xét ΔABC vuông tại A và ΔHBA vuôngtại H có

góc B chung

Do đó; ΔABC đồng dạng với ΔHBA

b: Xét ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HK là đường cao

nên \(AK\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)a. So sánh IN và IPb. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)a. CM: CD>ABb. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH4) CHo \(\Delta ABC\)nhọn, các đường trung...
Đọc tiếp

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)

a. So sánh IN và IP

b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.

2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.

3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)

a. CM: CD>AB

b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH

4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?

5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR

a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông

b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông

c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông

d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông

0