Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lí Thales đảo, vì MN//BC nên ta có:
AM/AB = MN/BC = AM/(AM+MB) = 1/4
Suy ra MN = 12/4 =3
Lời giải:
Kẻ đường cao $BH$ của tam giác $ABC$.
\(S_{ABC}=\frac{BH.AC}{2}(1)\)
Theo công thức lượng giác: \(\sin A=\frac{BH}{AB}\Rightarrow BH=\sin A. AB(2)\)
Từ \((1);(2)\Rightarrow S_{ABC}=\frac{\sin A. AB.AC}{2}=\frac{bc\sin \alpha}{2}\)
ΔABD~ΔBDC(g.g) =>\(\frac{AB}{BD}=\frac{BD}{CD}\)=> AB.CD= BD2
=> AB(25-AB)= 144 => (AB-9)(AB-16)=0
=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}AB=9cm\\CD=16cm\end{matrix}\right.\\\left\{{}\begin{matrix}AB=16cm\\CD=9cm\end{matrix}\right.\end{matrix}\right.\)
hình bạn tự vẽ nhá
a) Xét tam giác BAH và tam giác ABC , có :
A^ = H^ = 90O
B^ : góc chung
=> tam giác HAB ~ tam giác ACB ( g.g)
b) ADĐL pitago vào tam giác vuông ABC , có :
AB2 + AC2 = BC2
=> 122 + 166 = BC2
=> BC2 = 400
=> BC = 20 cm
Vì tam giác ACB ~ tam giác HAB , nên ta có :
\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)
=> \(\dfrac{AH}{16}\)=\(\dfrac{12}{20}\)
=> AH = 9,6 cm
Ta có : AD là phân giác của A^
=> \(\dfrac{AB}{AC}\)= \(\dfrac{BD}{DC}\)
=> \(\dfrac{12}{16}\)=\(\dfrac{BD}{20-BD}\)
=> 16BD = 240 - 12BD
=> 28BD = 240
=> BD = 8,5 cm
hình bạn tự vẽ ak nghen!!!
a)
Xét tam giác ABC và HBA có:
\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{BHA}=90^o\\chung\widehat{B}\end{matrix}\right.\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)