\(\Delta\) ABC có 3 góc nhọn , đường cao AH . Ở miền ngoài của \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

B C A E F H M N

Xét ∆AHB,∆EMA có :

^AHB = ^EMA = 90o

AB = AE (gt)

^BAH = ^AEM (vì cùng phụ với ^MAE)

Do đó : ∆AHB = ∆EMA (Ch - Gn)

=> EM = AH (1)

Cmtt ta cũng có : ∆AHC = ∆FNA (Ch-Gn)

=> HC = NA (2)

Từ (1)(2) => EM + HC = AH + NA

              => EM + HC = NH (A nằm giữa H,N)

b) Có : EM _|_ AH

            FN _|_ AH

=> EM // FN

16 tháng 5 2017

sai đề

19 tháng 5 2017

Em sửa lại đề là tâm giác ABD và ACE vuông cân ạ :( Em cảm ơn <3

7 tháng 4 2019

a) xét tg EAC và tg BAF

có: EA = BA (gt); ^EAC =^BAF ( ^EAB = ^ FAC = 90 độ, ^BAC chung); AC = AF(gt)

=> tg EAC = tg BAF(c-g-c)

=> EC = BF ( 2 cạnh t/ư)

b) Kẻ \(EG\perp AH⋮G;FK\perp AH⋮K\)

xét tg EGA vuông tại G và tg AHB vuông tại H

có: EA = AB (gt); ^EAG =^ABH ( cùng phụ với ^BAH)

=> tg EGA = tg AHB( ch-gn)

=> EG = AH ( 2 cạnh t/ư) (1)

chứng minh tương tự, có: tg AFK = tg CAH(ch-gn)

                                         => FK = AH (2 cạnh t/ư) (2)

Từ(1);(2) => EG = FK (=AH)

xét tg EGI vuông tại G và tg FKI vuông tại K

có: EG = FK (cmt); ^EIG = ^FIK (đ đ)

=> tg EGI = tg FKI ( cgv -gn)

=> EI = FI (2 canh t/ư)

=> I là trung điểm của EF

...

hình bn tự kẻ nha

7 tháng 4 2019

cảm ơn bn

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.3/ Cho tam giác nhọn ABC. H là trực tâm:CMR: a) HA+HB+HC<AB+AC           b)...
Đọc tiếp

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.

2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.

3/ Cho tam giác nhọn ABC. H là trực tâm:

CMR: a) HA+HB+HC<AB+AC

           b) HA+HB+HC<\(\frac{2}{3}\)(AB+BC+CA)

4/ Cho \(\Delta ABC\) vuông tại A. Gọi I là giao điểm của các đường phân giác ABC. Vẽ \(ID\perp AB\) tại D. CMR AB+AC-BC=2ID

5/ Cho \(\Delta ABC\) vuông tại A. AH là đường cao. Gọi I,K,S lần lượt là giao điểm các đường phân giác của \(\Delta ABC\)\(\Delta ABH\)\(\Delta ACH\). Vẽ \(II'\perp BC\) tại I', \(KK'\perp BC\) tại K', \(SS'\perp BC\) tại S'. CMR: SS'+II'+KK'=HA

0