Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: tam giác ABC cân tại A
=> góc ABC = góc ACB ( tính chất tam giác cân)
mà góc ABC = góc HBD; góc ACB = góc KCE ( đối đỉnh)
=> góc HBD = góc KCE (= góc ABC = góc ACB)
Xét tam giác DHB vuông tại H và tam giác EKC vuông tại K
có: DB = EC (gt)
góc HBD = góc KCE (cmt)
\(\Rightarrow\Delta DHB=\Delta EKC\left(ch-gn\right)\)
=> HB = KC ( 2 cạnh tương ứng)
b) ta có: góc ABC + góc ABH = 180 độ ( kề bù)
góc ACB + góc ACK = 180 độ ( kề bù)
=> góc ABC + góc ABH = góc ACB + góc ACK ( = 180 độ)
=> góc ABH = góc ACK ( góc ABC = góc ACB)
Xét tam giác ABH và tam giác ACK
có: AB = AC (gt)
góc ABH = góc ACK
BH = CK (phần a)
\(\Rightarrow\Delta ABH=\Delta ACK\left(c-g-c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{AKC}\) ( 2 góc tương ứng)
c) ( Nối H với E)
ta có: \(DH\perp BC⋮H\)
\(EK\perp BC⋮K\)
\(\Rightarrow DH//EK\) ( định lí từ vuông góc đến //)
=> góc DHE = góc KEH ( so le trong)
ta có: tam giác DHB = tam giác EKC ( phần a)
=> DH = EK ( 2 cạnh tương ứng)
Xét tam giác DHE và tam giác KEH
có: DH = KE ( cmt)
góc DHE = góc KEH (cmt)
HE là cạnh chung
\(\Rightarrow\Delta DHE=\Delta KEH\left(c-g-c\right)\)
\(\Rightarrow\widehat{DEH}=\widehat{KHE}\) ( 2 góc tương ứng)
mà góc DEH và góc KHE nằm ở vị trí so le trong
=> HK // DE ( định lí //)
d) ta có: \(\Delta ABH=\Delta ACK\) ( phần b)
=> AH = AK ( 2 cạnh tương ứng)
góc BAH = góc CAK ( 2 góc tương ứng)
=> góc BAH + góc BAC = góc CAK + góc BAC
=> góc HAE = góc KAD
ta có: AB = AC; BD = CE
=> AB + BD = AC + CE
=> AD = AE
Xét tam giác AHE và tam giác AKD
có: AE = AD (cmt)
góc HAE = góc KAD (cmt)
AH = AK ( cmt)
\(\Rightarrow\Delta AHE=\Delta AKD\left(c-g-c\right)\)
mấy câu a,b,c,d chắc bạn biết làm hết rồi nên mình giải câu e nha
cmd tam gi1c ahi=aki(c.c.c)suy ra góc hai=kai
cmđ dai=eai
gọi giao điểm của ai va bc la kcòn với de là n
cmd tam giac bak=cak suy ra gó akb=akc =90 độ
tương tự cmd and =90 độ
vậy ai vuông góc với de
mình bận nên ghi hơi tat nên chổ nào bạn ko hiểu ở bài này có the hoi mình ,nếu bnko hieu caub,c,d có thể hỏi mình
mấy câu a,b,c,d chắc bạn biết làm hết rồi nên mình giải câu e nha
cmd tam gi1c ahi=aki(c.c.c)suy ra góc hai=kai
cmđ dai=eai
gọi giao điểm của ai va bc la kcòn với de là n
cmd tam giac bak=cak suy ra gó akb=akc =90 độ
tương tự cmd and =90 độ
vậy ai vuông góc với de
chúc bn hok tốt @_@
a,Ta có: góc HBD=góc ABC
góc KCE = góc ACB
Mà góc ABC = góc ACB ( tam giác ABC cân)
Xét tam giác BDH và tam giác CEK:
Góc DHB = góc EKC
BD=CE (GT)
Góc HBD = góc KCE (cmt)
=> tam giác BDH = tam giác CEK ( cạnh huyền - góc nhọn )
b, Ta có: AB=AC;BD=CE
=> AB+BD=AC+CE
<=>AD=AE
Xét tam giác AHD và tam giác AKE:
HD=KE(tam giác BDH = tam giác CEK)
Góc HDB=góc KEC(tam giác BDH = tam giác CEK)
AD=AE(cmt)
=> tam giác AHD = tam giác AKE
=>AH=AK và góc HAD = góc KAE
Xét tam giác AHB và tam giác AKC
AH=AK(cmt)
góc HAB = góc KAC(cmt)
AB=AC( tam giác ABC cân)
=> tam giác AHB = tam giác AKC
=> Góc AHB = góc AKC
A B C H K I D E
a) Tao có :) \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
T lại có :) \(\widehat{ABC}=\widehat{HBD}\left(đđ\right)\)
\(\widehat{ACB}=\widehat{KCE}\left(đđ\right)\)
\(\Rightarrow\widehat{HBD}=\widehat{KCE}\)
Xét \(\Delta HBD\)và \(\Delta KCE\)t có :)
\(\widehat{HBD}=\widehat{KCE}\)
\(BD=CE\)
\(\widehat{DHB}=\widehat{EKC}\left(=90^o\right)\)
\(\Rightarrow\Delta HBD=\Delta KCE\left(ch-gn\right)\)
\(\Rightarrow HB=KC\left(đpcm\right)\)
b) T có :) \(\widehat{ABH}+\widehat{ABC}=180^o\)( kề bù )
\(\widehat{ACK}+\widehat{ACB}=180^o\)( kề bù )
Mà :) \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABH}=\widehat{ACK}\)
Xét \(\Delta AHB\)và \(\Delta AKC\)có :)
\(HB=CK\)
\(\widehat{ABH}=\widehat{ACK}\)
\(AB=AC\)
\(\Rightarrow\Delta AHB=\Delta AKC\left(c-g-c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{AKC}\left(đpcm\right)\)
c) Do \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\left(1\right)\)
Mà :) \(AB=AC\)
\(BD=CE\)
\(\Rightarrow AB+BD=AC+CE\)
\(\Rightarrow AD=AE\)
\(\Rightarrow\Delta ADE\)cân tại A \(\Rightarrow\widehat{ADE}=\frac{180^o-\widehat{BAC}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{ABC}=\widehat{ADE}\)
Mà hai góc trên đồng vị :)
\(\Rightarrow HK//DE\left(đpcm\right)\)
d) Theo câu b t có \(\Delta AHB=\Delta AKC\)
\(\Rightarrow\hept{\begin{cases}AH=AK\\\widehat{HAB}=\widehat{KAC}\end{cases}}\)
\(\Rightarrow\widehat{HAB}+\widehat{BAC}=\widehat{KAC}+\widehat{BAC}\)
\(\Leftrightarrow\widehat{HAC}=\widehat{KAB}\)
Xét \(\Delta AHE\)và \(\Delta AKD\)có :)
\(\widehat{HAC}=\widehat{KAB}\)
\(AH=AK\)
\(AE=AD\)
\(\Rightarrow\Delta AHE=\Delta AKD\left(c-g-c\right)\left(đpcm\right)\)
e) \(\Rightarrow\widehat{AHE}=\widehat{AKD}\)
\(\Leftrightarrow\widehat{AHK}+\widehat{KHE}=\widehat{AKH}+\widehat{HKD}\)
Mà :) \(\widehat{AHK}=\widehat{AKH}\)( câu b )
\(\Rightarrow\widehat{KHE}=\widehat{HKD}\Rightarrow\Delta HIK\)cân tại I
\(\Rightarrow HI=IK\)
Xét \(\Delta AHI\)và \(\Delta AKI\)có :)
\(HI=IK\)
\(AH=AK\)
Chung AI
\(\Rightarrow\Delta AHI=\Delta AKI\left(c-c-c\right)\)
\(\Rightarrow\widehat{HAI}=\widehat{KAI}\)
\(\Leftrightarrow\widehat{HAB}+\widehat{BAI}=\widehat{CAI}+\widehat{KAC}\)
Lại có :) \(\widehat{HAB}=\widehat{KAC}\)
\(\Rightarrow\widehat{BAI}=\widehat{CAI}\)
\(\Rightarrow\)AI là tia phân giác \(\widehat{BAC}\)hay \(\widehat{DAE}\)
Mà \(\Delta DAE\)cân tại A
\(\Rightarrow AI\perp DE\)( do đường phân giác của đỉnh tam giác cân cũng chính là đường cao của tam giác cân đó )
Vậy .... :)
Hình vẽ :
a) Dễ nhận thấy DE = KH = 1/2 BC
Do đó KH = 1/2BC suy ra KB + CH = 1/2BC=KH
Vậy KB + CH = KH
Do vậy 2KB + CH = KH + KB (1)
KB + 2CH = KH + KB (2)
Từ đó suy ra CH = KB
Mà HB = KH + KB (3)
CK = KH + HC (4)
Mà KB = HC nên KH + KB = KH + HC hay HB = CK
b) Chứng minh \(\Delta AHB=\Delta AKC\)
Ta có: \(\Delta AHB=\Delta AKC\left(c.g.c\right)\)
Suy ra \(\widehat{AHB}=\widehat{AKC}\)
c) Theo hình vẽ ta có BD = CE và BD là tia đối của BA, nên BD thẳng hàng với BA
CE là tia đối của CA nên CE thẳng hàng với CA
Do đó CE = BD . DO đó EK = DH.
Theo đề bài DH và EK cùng vuông góc BC (5) mà DH = EK do đó \(\widehat{D}=90^o;\widehat{E}=90^o\)(6)
Từ (5) và (6) suy ra HK song song DE
Sau đó tự làm tiếp
bạn vào đây nha
Câu hỏi của Phạm Mai Trang - Toán lớp 7 - Học toán với OnlineMath
1) đề có phải là: Cho tam giác ABC cân tại A, góc A nhỏ hơn 90 độ. Vẽ BD vuông AC và CE vuông AB. H là giao điểm của BD và CE.
a) Chứng minh Tam giác ABD = Tam giác ACE
b) Chứng minh tam giác AED cân
c, AH là đường trung trực của ED.
D) Trên tia đối DB lấy K sao cho DK = DB. Chứng minh góc ECB = Góc DKC
A B C D E H K
a) Xét tam giác ABD và tam giác ACE có:
\(\widehat{ACE}=\widehat{ABD}\left(cùngphuvoi\widehat{BAC}\right)\Rightarrow\Delta ABD=\Delta ACE\left(g.c.g\right)\hept{\begin{cases}AC=AB\left(\Delta ABCcântạiA\right)\\\widehat{BAC}chung\\\widehat{AEC}=\widehat{ADB}=90^o\end{cases}}\)
b) AE=AD(vì tam giác ABD=tam giác ACE
=> tam giác AED cân tại A
c) Xem lại đề
d) Xét tam giác BCK có:
\(\hept{\begin{cases}BK\perp DC\\BD=DK\end{cases}}\)
=> CD là đường trung trực của BK
=> BC=CK
=> tam giác BCK cân tại C
=>\(\widehat{CBK}=\widehat{CKB}\)
Mà \(\widehat{ECB}=\widehat{CBK}\)(vì góc ABC=góc ACB; góc ABD= góc ACE)
=> góc ECB= góc CKB
3) Đề là:
Cho góc xOy, vẽ tia phân giác Ot của góc xOy. Trên tia Ot lấy điểm M bất kì, trên tia Ox và Oy lần lượt lấy các điểm A và B sao cho OA = OB gọi H là giao điểm của AB và Ot . CHỨNG MINH:
a/ MA = MB
b/ OM là đường trung trực của AB
c/ Cho biết AB = 6cm; OA= 5cm. Tính OH ? (bn viết khó hiểu qá nên mk xem lại trong vở)
Tự vẽ hình!
a/ Xét tam giác OAM và tam giác OBM, có:
Cạnh OM là cạnh chung
OA = OB (gt)
góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)
=> Tam giác OAM = tam giác OBM (c.g.c)
=> MA = MB ( 2 cạnh tương ứng)
b/ Ta có: MA = MB (cmt)
=> Tam giác AMB là tam giác cân
=> Góc MAH = góc MBH
Xét tam giác AMH và tam giác BMH, có:
góc MAH = góc MBH ( cmt)
MA = MB ( cmt)
góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)
=> tam giác AMH và tam giác BMH ( g.c.g)
=> AH = HB ( 2 cạnh tương ứng)
=> H là trung điểm của AB (1)
Vì tam giác AMH = tam giác BMH (cmt)
=>góc MHA = góc MHB ( 2 góc tương ứng)
mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)
=> góc MHA = góc MHB= 180 độ : 2 = 90 độ
=> MH vuông góc với AB (2)
Từ (1) và (2)
=> MH là đường trung trực của AB
=> OM là đường trung trực của AB ( vì H thuộc OM )
c/ Vì H là trung điểm của AB (cmt)
=> AH =HB = AB : 2 = 6 :2 = 3 (cm)
Xét tam giác OAH vuông tại H có: OA2 = OH2 + AH2 ( định lí Py-ta-go)
=> 52 = OH2 + 32
=> 25 = OH2 + 9
=> OH2 = 25 - 9
=> OH2 = 16
\(\Rightarrow OH=\sqrt{16}\)
\(\Rightarrow OH=4cm\)
Hình tự vẽ nha
a) Vì tam giác ABC cân tại A
=> ABC = ACB (1)
Ta có ABC + ABD = ACB + ACE ( cùng = 1800 ) (2)
Từ (1) và (2) => ABD = ACE
Xét tam giác ABD và tam giác ACE có :
AB = AC ( gt )
ABD = ACE ( cmt )
BD = CE ( gt )
=> tam giác ABD = tam giác ACE ( c-g-c )
=> D = E
Xét tam giác BHD và tam giác CKE có :
DHB = EKC ( = 900 )
BD = CE ( gt )
D = E ( cmt )
=> tam giác BHD = tam giác CKE ( ch - gn )
=> đpcm
b) Vì tam giác ABD = tam giác ACE ( chứng minh câu a )
=> HAB = KAC ( 2 góc tương ứng )
Xét tam giác AHB và tam giác AKC có :
HAB = KAC ( cmt )
AHB = AKC ( = 900 )
AB = AC ( gt )
=> tam giác AHB = tam giác AKC ( ch - gn )
=> đpcm
c) Nối H với K
Xét tam giác ADE cân tại A ( vì AD = AE )
=> \(\widehat{D}=\frac{180^0-\widehat{DAE}}{2}\left(1\right)\)
Xét tam giác AHK cân tại A ( vì AH = AK )
\(\Rightarrow\widehat{AHK}=\frac{180^0-\widehat{DAE}}{2}\left(2\right)\)
Từ (1) và (2) => D = AHK
mà 1 góc này ở vị trí đồng vị
=> HK // DE hay HK // BC ( đpcm )
Có j lên đây hỏi nha : Group Toán Học
Bạn tự vẽ hình nha
AD = AB + BD
AE = AC + CE
mà AB = AC (tam giác ABC cân tại A)
BD = CE (gt)
=> AD = AE
HAE = HAB + BAE
KAD = KAC + CAD
mà HAB = KAC (tam giác AHB = tam giác AKC)
=> HAE = KAD
Xét tam giác AHE và tam giác AKD có:
AD = AE (chứng minh trên)
HAE = KAD (chứng minh trên)
AH = AK (tam giác AHB = tam giác AKC)
=> Tam giác AHE = Tam giác AKD (c.g.c)
Chúc bạn học tốt
Đã Đây là ý kiến của mk mk ko chắc đg nha!