Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
DO đo:ΔADB=ΔAEC
b: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
c: Xét ΔIEB vuông tại E và ΔIDC vuông tại D có
BE=CD
\(\widehat{IBE}=\widehat{ICD}\)
Do đó: ΔIEB=ΔIDC
Suy ra: IB=IC
hay I nằm tren đường trung trực của BC(1)
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là trung trực của BC(2)
Từ (1) và (2) suy ra A,I,M thẳng hàng
A B C E D O
a.Xét\(\Delta ADB\)và\(\Delta AEC\)có:
\(\widehat{BDA}=\widehat{CEA}=90^o\left(gt\right)\)
\(\widehat{A}\)chung
AB=AC(gt)
=> \(\Delta ADB=\Delta AEC\)(cạnh huyền góc nhọn)
b. Theo a ta có: \(\widehat{DBE}=\widehat{DCE}\)(2 góc tương ứng)
Mà \(\widehat{B}=\widehat{C}\)( tính chất tam giác cân)
=> \(\widehat{OBC}=\widehat{OCB}\)
=> Tam giác BOC cân tại O
câu b sai đề thì phải bạn ạ
còn câu c thì mình không biết M là giao điểm của BC với cạnh nào nên không làm được
a,xét tam giác ABD và tam giác ACE có:
AB=AC(gt)
vì \(\widehat{ABC}\)=\(\widehat{ACB}\)suy ra \(\widehat{ABD}\)=\(\widehat{ACE}\)
BD=CE(gt)
\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE(c.g.c)
b,xét 2 tam giác vuông ADH và AEK có:
AD=AE(theo câu a)
\(\widehat{DAH}\)\(\widehat{EAK}\)(theo câu a)
\(\Rightarrow\)\(\Delta\)ADH=\(\Delta\)AEK(CH-GN)
\(\Rightarrow\)DH=EK
c,xét tam giác AHO và tam giác AKO có:
AH=AK(theo câu b)
AO cạnh chung
\(\Rightarrow\)\(\Delta\)AHO=\(\Delta\)AKO( cạnh góc vuông-cạnh huyền)
\(\Rightarrow\)\(\widehat{HAO}\)=\(\widehat{KAO}\)
\(\Rightarrow\)AO là phận giác của góc BAC
d,câu này dễ nên bn có thể tự làm tiếp nhé
A B C E D O
a)Xét ΔADB và ΔAEC có:
\(\widehat{ADB}=\widehat{AEC}=90^o\)
AB=AC(gt)
\(\widehat{A}\) : góc chung
=> ΔADB=ΔAEC ( cạnh huyền - góc nhọn)
=> BD=CE
b) Vì ΔADB=ΔAEC(cmt)
=> \(\widehat{ABD}=\widehat{ACE};AD=AE\)
Có: AB=AE+BE
AC=AD+DC
Mà: AB=AC(gt); AE=AD(cmt)
=>BE=DC
Xét ΔOEB và ΔODC có:
\(\widehat{OEB}=\widehat{ODC}=90^o\)
BE=DC(cmt)
\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)
=> ΔOEB=ΔODC(g.c.g)
c) Vì: ΔOEB=ΔODC (cmt)
=> OB=OC
Xét ΔAOB và ΔAOC có:
AB=AC(gt)
\(\widehat{ABO}=\widehat{ACO}\left(cmt\right)\)
OB=OC(cmt)
=> ΔAOB=ΔAOC(c.g.c)
=> \(\widehat{OAB}=\widehat{OAC}\)
=> AO là tia pg của \(\widehat{BAC}\)
Tự vẽ hình
a, Do tam giác ABC cân tại A ( gt )
=> AB = AC ; ABC = ACB ( tính chất tam giác cân)
Xét tam giác ABD và tam giác ACE có :
Góc BAC chung
AB = AC ( cmt )
ADB = AEC ( = 90 độ )
=> Tam giác ABD = ACE ( cạnh huyền - góc nhọn )
=> ABD = ACE ( 2 góc tương ứng )
AD = AE ( 2 cạnh tương ứng )
=> Tam giác ADE cân tại A ( định nghĩa tam giác cân )
=> ADE = AED ( tính chất tam giác cân )
Trong tam giác ABC có : ABC + ACB + BAC = 180 độ ( Tổng 3 góc của 1 tam giác )
Trong tam giác AED có : AED + ADE + BAC = 180 độ ( tổng 3 góc của 1 tam giác )
=> ABC + ACB = AED + ADE
Mà ABC = ACB ; AED = ADE ( cmt )
=> 2.ABC = 2.AED => ABC = AED
Mà 2 góc này ở vị trí đồng vị => DE // BC ( Dấu hiệu nhận biết 2 đường thẳng song song )
Vậy DE // BC
b, Ta có : AE + BE = AB
AD + CD = AC
Mà AE = AD ; AB = AC ( cmt ) => BE = CD
Xét tam giác EOB và tam giác DOC có :
BDC = CEB ( = 90 độ )
BE = CD ( cmt )
ABD = ACE ( cmt )
=> tam giác EOB = DOC ( g.c.g )
=> OE = OD ( 2 cạnh tương ứng )
Vậy tam giác EOB = DOC
c, Ta có : AE = AD ( cmt ) => A nằm trên đường trung trực của đoạn thẳng DE
OE = OD ( cmt ) => O nằm trên đường trung trực của đoạn thẳng DE
=> AO là trung trực của đoạn thẳng DE
Vậy AO là trung trực của đoạn thẳng DE
d, Vì AO là trung trực của đoạn thẳng DE ( cmt )
=> AO // DE ( t/c đường trung trực )
Mà DE // BC ( cmt ) => AO vuông góc với BC ( từ vuông góc đến song song )
Xét tam giác ABC cân tại A có AH là đường trung tuyến
=> AH đồng thời là đường cao ứng với cạnh BC ( t/c tam giác cân )
=> AH vuông góc với BC
=> AH và AO trùng nhau => A,H,O thẳng hàng ( đpcm )
a, xét tam giác abd và tam giác ace có
góc adb=góc aec =90o (gt)
góc a chung
ab=ac (do tam giác abc cân -gt)
suy ra tam giác abd= tam giác ace (cạnh huyền - góc nhọn)
b, có ad=ae (do tam giác abd = tam giác ace-cmt)
suy ra tam giác aed cân tại a
c, có ad=ae (cmt)
suy ra a thuộc đường trung trực của ed
xét tam giác aeh và tam giác adh có
góc aeh = góc adh=90o (gt)
ad=ae (cmt)
ah cạnh huyền chung
suy ra tam giác aeh=tam giác adh (cạnh huyền cạnh góc vuông)
suy ra hd=he
suy ra h thuộc đường trung trực của ed
suy ra ah là đường trung trực của ed
d,xét tam giác bdc và tam giác kdc có
bd=dk (gt)
góc bdc = góc cdk (=90o-gt)
cd chung
suy ra tam giác bdc = tam giác kdc (c.g.c)
suy ra góc dbc = góc dkc (1)
có góc bdc= góc abc - góc abd
góc ecb= góc acb - góc ace
mà góc abc=góc acb (do tam giác abc cân tại a -gt)
góc abd=góc ace (do tam giác abd=tam giác ace-cmt)
suy ra góc dbc= góc ecb (2)
từ(1)(2) suy ra góc ecb = góc dkc
cảm ơn bạn