Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha!
Ta có:
AH_|_BC(AH là đường cao tam giác ABC)
DK_|_BC(DK là đường trung trực của BC)
=>AH//DK(t/c đường thẳng song song)
=>góc AED=góc EDK(so le trong) (1)
=>góc BEH=góc EDK( 2 góc đồng vị) (2)
Từ (1),(2) suy ra:
góc AED=góc BEH=góc EDK=góc BDK(do E là giao điểm của AH và BD)
Mặt khác:
Xét tam giác BKD và tam giác DKC,có:
DK cạnh chung
BK=KC( K là trung điểm của BC)
góc BKD=góc DKC=1 vuông
=> tam giác BKD=tam giác DKC(c.g.c)
=>BD=DC
=>tam giác BDC cân tại D
Nên góc BDK=góc CDK(t/c tam giác cân) (3)
Lại do: AH//DK
=>góc CDK=góc DAH( 2 góc đồng vị) (4)
Từ (3),(4)=>góc BDK=góc DAH
Mà góc AED=góc BDK( so le trong)
E là giao điểm của BD và AH(gt)
Nên E nằm giữa BD và AH
=>góc DAE=góc DAH=góc AED
=>tam giác ADE cân tại D ( đpcm)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a.vì \(\Delta ABC\)cân tại A mà AI là đường phân phân giác của\(\widehat{A}\)=>AI đồng thời là đường cao và đường trung tuyến ứng với cạnh BC của tam giác ABC
=>\(AI\perp BC\)
b.xét tam giác ABC có
AI,CM là hai đường trung tuyến của tam giác ABC(gt)(cmt)
mà AI cắt CM tại G=>G là trọng tâm của tam giác ABC
=>BG là đường trung tuyến của tam giác ABC
c.ta có IB=IC=BC/2=18/2=9(cm)(AI là đương trung tuyến ứng với cạnh BC của tam giác ABC=>I là trung điểm của tam bc)
xét tam giácACI vuông tại I có
AC^2=AI^2=IC^2(ĐL py-ta-go)
hay 15^2=9^2+AI^2
=>AI^2=225-81=144
=>AI=12(cm)
tam giác ABC có G là trọng tâm tam giác ABC ;AI là đường trung tuyến ứng với cạnh BC của tam giác ABC
=>IG=2/3AI=2/3.12=89(cm)
A B C D E F I 1 2
*Bài dài quá, mk tóm tắt cách làm rồi bạn diễn giải ra nha*
a) Để chứng minh \(\Delta ADB=\Delta ADC\), ta chứng minh theo trường hợp cạnh - góc - cạnh
- Ta thấy có AD là cạnh chung
- \(\widehat{A_1}=\widehat{A_2}\) do phân giác
- AB = AC do \(\Delta ABC\) cân
b) Để chứng minh \(\Delta AED=\Delta AFD\), ta chứng minh theo trường hợp cạnh huyền - góc nhọn của tam giác vuông
- Dễ dàng chứng minh 2 tam giác này vuông lần lượt tại E, F
- AD là cạnh chung
- \(\widehat{A_1}=\widehat{A_2}\)
c) Để chứng minh \(\Delta BDE=\Delta CDF\), ta chứng minh theo trường hợp cạnh huyền - góc nhọn của tam giác vuông
- Dễ thấy ED = DF do \(\Delta AED=\Delta AFD\)
- BD = DC
(do AD là phân giác của \(\Delta ABC\) mà \(\Delta ABC\) cân tại A nên AD cũng là trung tuyến. Suy ra D là trung điểm CD nên BD=DC)
d) Để chứng minh AD là trung trực BC, ta phải chứng minh D là trung điểm BC và AD vuông góc BC
- Đã có D là trung điểm BC do cmt
- AD vuông góc BC do AD là phân giác của \(\Delta ABC\) mà \(\Delta ABC\) cân tại A nên AD cũng là đường cao.
e) Để chứng minh \(I\in AD\) mà I là trung trực EF thì ta chứng minh AD là trung trực EF
Để chứng minh AD là trung trực EF, ta phải có AE = AF, ED = DF (cmt do \(\Delta AED=\Delta AFD\))
a) Ta có AB^2 + AC^2=6^2 + 8^2= 36 + 64= 100=BC^2
=> ΔABC vuông tại A (định lý Py- ta-go đảo)
b) Xét ΔAHD và ΔAED có:
AD là cạnh chung
^AHD=^AED (=90°)
^HAD=^EAD (AD là tia phân giác)
Vậy ΔAHD = ΔAED
=> AH=AE
DH=DE
Nên AD là đường trung trực của HE
c) ΔDEC vuông tại E có DC là cạnh huyền nên DC là cạnh lớn nhất.
Do đó DE<DC
Mà DH=DE (cmt)
Nên DH<DC
a) Xét tam giác ABC có:
6^2 +8^2 =10^2
<=> AB^2 +AC^2 =BC^2
Áp dụng định lí Py-ta-go
=> tam giác ABC vuông tại A
=> đpcm
b)
+) xét tam giác AHD và tam giác AED có:
góc H = góc E =90 độ
cạnh AD chung
góc HAD = góc DAE ( gt)
=> tam giác AHD = tam giác AED (cạnh huyền -góc nhọn)
=> AH =AE ( 2 cạnh tương ứng)
=> Tam giác AHE cân tại A (1)
Gọi giao điểm của HE và AD là O
=> HO = OE
=> AO là đường trung tuyến của HE(2)
Từ 1 và 2
=> OA là đường trung trực của HE
Hay Ad là đường trung trực của HE
=> đpcm
a) xét 2 tam giác vuông AIB và AIC có:
AI cạnh chung
AB=AC(gt)
=> tam giác AIB=tam giác AIC(cạnh huyền-cạnh góc vuông)
=> IB=IC=> I là trung điểm của BC
b) xét 2 tam giác vuông MIB và NIC có:
IB=IC(theo câu a)
\(\widehat{B}\)=\(\widehat{C}\)(gt)
=> tam giác MIB =tam giác NIC(CH-GN)
=> MB=NC mà AB=AC=> AM=AN
=> tam giác AMN cân tại A
c)
A B C I M N K