Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó ΔAHB=ΔAHC
b: Xét ΔABC có
H là trung điểm của BC
HD//AC
Do đó: D là trung điểm của AB
Ta có: ΔHDA vuông tại H
mà HD là đường trung tuyến
nên DA=DH
c: Xét ΔABC có
CD là đường trung tuyến
AH là đường trung tuyến
CD cắt AH tai G
Do đó: G là trọng tâm
=>B,G,E thẳng hàng
a) Vì G là trọng tâm của \(\Delta ABC\) nên:
\(AF=BF=\dfrac{AB}{2}\)(CG là đường trung tuyến)
\(AE=EC=\dfrac{AC}{2}\) (BE là đường trung tuyến)
mà AB = AC (\(\Delta ABC\) cân tại A)
\(\Rightarrow\) AF = AE
\(\Rightarrow\) \(\Delta AFE\) cân tại A.
Hai tam giác cân AFE và ABC có:
\(\widehat{AFE} = \widehat{ABC}\) \(\left(=\dfrac{180^o-\widehat{BAC}}{2}\right)\)
mà hai góc này ở vị trí đồng vị
\(\Rightarrow\) EF // BC
b) \(\Delta FAM\) và \(\Delta EAM\) có:
AF = AE (cmt)
\(\widehat{FAM}=\widehat{EAM}\) (tính chất tam giác cân)
AM là cạnh chung
\(\Rightarrow\Delta FAM=\Delta EAM\left(c.g.c\right)\)
\(\Rightarrow\) \(\widehat{EMA} = \widehat{AMF}\) (hai góc tương ứng)
\(\Rightarrow\) AM là tia phân giác của \(\widehat{FME}\)
\(\Rightarrow\) G cách đều hai cạnh ME và MF.
a: XétΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đo; ΔAHB=ΔAHC
b: Xét ΔABM và ΔACM có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
Suy ra: MB=MC
hay ΔMBC cân tại M
c: Xét ΔABN có \(\widehat{ABN}=\widehat{ANB}\)
nen ΔABN cân tại A
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Tự vẽ hình nhá!
a. Ta có: \(AB=\dfrac{1}{2}AC\)
và E là trung điểm của AC
=> AB = AE = EC
Xét tam giác ABD và tam giác AED có:
AB = AE ( cmt)
góc BAD = góc EAD ( AD là phân giác của góc BAC)
AD cạnh chung
Do đó tam giác ABD = tam giác AED ( c.g.c)
=> BD = DE ( đpcm)
b.
Ta có: tam giác ABD = tam giác AED
=>góc ABD = góc AED ( 2 góc tương ứng)
Ta có: ABD + KBD = 180o
AED + KEC = 180o
mà ABD = AED
=> góc KBD = KEC
Xét tam giác KBD và tam giác CED có:
KBD = KEG
BD = ED( tam giác ABD = tam giác AED)
góc BDK = EDC ( đối đỉnh)
Do đó tam giác KBD = tam giác CED ( g.c.g)
=> DK = DC ( 2 cạnh tương ứng)
Suy ra tam giác DCk cân tại D