\(\Delta ABC\) cân tại A, có gócA=100 độ, tia phân giác của góc ABC cắt AC tại D. Chứ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2020

Bài 1: 

A B C I E D H

Vẽ \(IH\) là tia phân giác của \(\widehat{AIC}\)

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}=180^0-60^0=120^0\)

Ta có: \(AD\) là tia phân giác của \(\widehat{A}\left(1\right)\)

Và: \(CE\) là tia phân giác của \(\widehat{C}\left(2\right)\) 

Từ   \(\left(1\right)\left(2\right)\Rightarrow\widehat{IAC}+\widehat{ICA}=\frac{120^0}{2}=60^0\)

Lại có: \(\widehat{EIA}=\widehat{IAC}+\widehat{ICA}=60^0=\widehat{AIH}\)

Xét \(\Delta EAI\) và \(\Delta HAI\) có:

\(\widehat{EAI}=\widehat{HAI}\left(AD-là-tia-p.giác-của\widehat{A}\right)\)

\(\widehat{AIE}=\widehat{AIH}\left(cmt\right)\)

\(AI\) chung

\(\Rightarrow\Delta AIE=\Delta AIH\left(g-c-g\right)\)

\(\Rightarrow IE=IH\left(1\right)\)

Chứng minh tương tự \(\Delta CHI=\Delta CDI\left(g-c-g\right)\Rightarrow ID=IH\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow IE=ID\)

\(\Rightarrow\Delta IDE\) cân tại \(I\left(đpcm\right)\)

21 tháng 1 2020

2. A B C H K D E

Trên cạnh BC lấy điểm E sao cho BE = BD => \(\Delta\)DBE cân tại B (1)

=> BD = BE 

Ta có: BD là phân giác ^ABC  => ^DBE = 40\(^{^o}\): 2 = 20\(^o\)(2)

(1) ; (2) => ^BDE = ^DED = ( 180\(^o\)- 20\(^o\)) : 2 = 80\(^o\)

=> ^DEC = 180\(^o\)- 80\(^o\)=100\(^o\)

Xét \(\Delta\)DEC có: ^EDC = 180\(^o\)- ^DEC - ^DCE = 180\(^o\)-100\(^o\)-40\(^o\)=40\(^o\)

=> \(\Delta\)DEC cân tại E => DE = EC (3)

Từ D kẻ vuông góc với BC tại H và BA tại K.

D thuộc đường phân giác ^ABC  ( theo t/c đường phân giác ) => DK = DH 

Vì ^BAC = ^DEC = 100\(^o\)=> ^KAD = ^HED 

=> \(\Delta\)KAD = \(\Delta\)HED ( cạnh góc vuông - góc nhọn )

=> DA = DE (4)

Từ (3) ; (4) => DA = EC 

Vậy BC = BE + EC = BD + AD

21 tháng 1 2020

Câu hỏi của Phạm Thùy Dung - Toán lớp 7 - Học toán với OnlineMath

21 tháng 1 2020

Câu hỏi của Phạm Thùy Dung - Toán lớp 7 - Học toán với OnlineMath

29 tháng 9 2019

trên tia BC lấy M,N sao cho góc BDN=6O* , BDM=80* 
CM được tam giáC BDN=BDA( g-c-g)

=> AD=DN , góc DNB=DAB=100*

=> DNC=80* = DMB

=> DN=DM =DA=MC(Tự chứng minh)

=>đpcm

27 tháng 1 2018

Mình không biết  bạn dang hỏi gì. Nhưng mà bạn hãy nhé. Bởi vì mình chả lời dấu tien nen ban hãy dong viên mình nha.  Lần sau mình biết những bài toán khó mà bạn chưa hiểu thì mình sẽ hướng dẫn. 😛👐

27 tháng 1 2018

a)   Xét   \(\Delta ABI\)và    \(\Delta DBI\)có:

    \(BA=BD\)(GT)

    \(\widehat{ABI}=\widehat{DBI}\)(GT)

   \(BI\) chung

suy ra:    \(\Delta ABI=\Delta DBI\)   (g.c.g)

\(\Rightarrow\)\(\widehat{IAB}=\widehat{IDB}=90^0\)

\(\Rightarrow\)\(DI\perp BC\)

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

13 tháng 1 2019

A B C D E

Trên cạnh BC lấy điểm E sao cho BD=BE.

Dễ thấy: ^DBE = ^ABC/2 = 400/2 = 200 => ^BED = ^BDE = (1800 - ^DBE)/2 = 800 => ^DEC = 1000

Tam giác DEC có: ^DEC = 1000; ^ECD = ^ACB = 400 => Tam giác DEC cân tại E => ED=EC

Dễ dàng c/m được AD=ED (Gợi ý: Hạ DH, DK vuông góc AB,BC). Từ đó: EC = AD

Vậy thì BC = BE + EC = BD + AD (đpcm).

26 tháng 4 2017

B A C D E F

a)Xét \(\Delta ABD\) và \(\Delta EDB\)có:

\(\widehat{BAD}=\widehat{BED}\left(=90\right);\widehat{ABD}=\widehat{EBD}\)và BD chung

\(\Rightarrow\Delta ABD=\Delta EDB\)(cạnh huyền - góc nhọn)

b) Từ câu a  => AD = EB(2 cạnh tương ứng)

\(\Rightarrow\Delta ADF=\Delta FDC\left(g-c-g\right)\)(Bạn tự CM nha)

=> DF = DC (2 cạnh tương ứng)

=> \(\Delta FDC\)cân tại D

26 tháng 4 2017

Câu b mình có cách khác nhưng chả biết bạn học tới chưa. Thôi cứ tham khảo nhé chứ cách bạn kia ngắn gọn lắm rồi

Cách mình chứng minh góc DFC = góc FCD

Xét tam giác ABC có 2 đường cao FE;AC cắt nhau tại D

=> D là trực tâm tam giác ABC

=> BD là đường cao thứ 3

=> BD vuông góc FC tại D

Xét tam giác BFC có BD vừa là phân giác vừa là đường cao

=> tam giác BFC cân tại B

=> góc BFC = góc BCF

Vì tam giác ABD = tam giác EDB => AD = DE (hai cạnh tương ứng)

Xét tam giác ADF và tam giác DEC có:

  góc ADF = góc EDC (đối đỉnh)

  góc DAF = góc DEC = 90 độ (gt)

  AD = DE (cmt)

=> tam giác ADF = tam giác EDC (g.c.g)

=> góc AFD = góc DCE (hai góc t.ứng)

Mà: góc BFC = góc BCF

=> góc DFC = góc DCF 

=> tam giác FDC cân tại F

Xong!! =)))