Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N H I K
Qua B kẻ đường thẳng song song với NI, cắt tia CA tại điểm K.
Xét \(\Delta\)BCK có: N là trung điểm BC, NI // BK; I thuộc CK => I là trung điểm của CK
=> IK=IC => IA + AK = IM + CM. Mà IA=IM nên AK=CM.
Ta có: AK=CM; CM=AB => AK=AB => \(\Delta\)BAK cân tại A => ^ABK=^AKB
Lại có: IH // BK (NI // BK) => ^AKB=^AIH; ^ABK=^AHI (So le trong)
Mà ^ABK=^AKB (cmt) => ^AIH=^AHI => \(\Delta\)HAI cân tại A => AH=AI (đpcm).
Tự vẽ hình nhé Nữ hoàng sến súa là ta
Lấy K là trung điểm của AB. Nối K với E,K và C. Từ đó ta thấy D là trung điểm của AK
Do \(KEKE\)là đường trung bình tam giác \(ABCABC\)nên KE // BCKE // BC và KE=12BCKE=12BC
Lại có \(DEDE\)là đường trung bình tam giác \(AKCAKC\)nên DE // KCDE // KC
Ta thấy \(\Delta KEC\)và \(\Delta FCE\)có:
+ Chung CE
+ \(\widehat{KEC}=\widehat{FCE}\)( so le trong )
+ \(\widehat{ADE}=\widehat{ACK}\)( đồng vị ) ( mà \(\widehat{ADE}=\widehat{CEF}\Rightarrow\widehat{CEF}=\widehat{ACK}\))
\(\Rightarrow\Delta KEC=\Delta FCE\)( g.c.g ) \(\Rightarrow CF=EK\)
Mà \(EK=\frac{1}{2}BC\Rightarrow CF=\frac{1}{2}BC\)
Vậy \(CF=\frac{1}{2}BC\left(đpcm\right)\)
Áp dụng định lí Menelaus :
\(\frac{AE}{CE}\).\(\frac{AD}{BD}\).\(\frac{BF}{CF}\)= 1
Mà AE = CE, AD = 1/3BD
=> BF/CF = 3
=> CF = 1/2 BC
a: Xét ΔABC vuông tại A và ΔHBA vuôngtại H có
góc B chung
Do đó; ΔABC đồng dạng với ΔHBA
b: Xét ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)
A B C d M N I K H H' P Q
Gọi d là đường trung bình của tam giác ABC cắt AB,AC lần lượt tại P và Q.Gọi K là giao điểm của đường cao AH' của tam giác ABC và d
=> AH' vuông góc với d
Từ I kẻ IH vuông góc với BC tại H
Ta suy ra IHH'K là hình chữ nhật vì có ba góc bằng 90 độ => IH = KH'
Mà theo tính chất đường trung bình ta dễ dàng suy ra \(KH'=\frac{1}{2}AH'\) không đổi
Vậy \(IH\)có độ lớn không đổi . Mặt khác BC cố định nên suy ra khi M,N di chuyển thì I chạy trên đường thẳng d được giới hạn bởi PQ
Tập hợp điểm I là : \(I\in PQ\)