Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AHB và tam giác AHC có : AH chung
góc AHB = góc AHC = 90 do ...
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác AHB = tam giác AHC (ch - cgv)
b, tam giác AHB = tam giác AHC (câu a)
=> góc BAH = góc CAH (đn)
có HD // AC (gt) => góc DHA = góc HAC (slt)
=> góc DHA = góc DAH
=> tam giác DAH cân tại D (tc)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) Xét Δ AHB vàΔ AHC có:
AH chung
AB =AC (vì Δ ABC cân tại A theo gt)
AH ⊥ BC (vì AH là đường cao theo gt)
⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)
Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)
⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)
Ta lại có: HD // AC (gt )
⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)
Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)
Từ (*) (**) ⇒AD=DH=BD
c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)
⇒ AH là trung tuyến Δ ABC tại A ( 3)
Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )
mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB
⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)
mà ta có AD=DH (câu b) ⇒ DA=DB
⇒ CD là trung tuyến Δ ABC tại C (4)
Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC
mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B
⇒ BE qua G ⇒ B,G,E thẳng hàng
Đề thiếu ở ý b) với c) '-'
a) Tam giác ABC đều
=> AB = AC = BC
=> ^A = ^B = ^C = 600
Xét tam giác vuông AHB và tam giác vuông AHC có :
AB = AC ( cmt )
AH chung
=> Tam giác vuông AHB = tam giác vuông AHC ( ch - cgv )
???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
a, xét tam giác aec và tam giác aed có
ae chung
ec=ed(gt)
ac=ad(gt)
=>tam giác aec = tam giác aed(ccc)
b. từ cma ta có tam giác aec = tam giác aed
=>góc cae=góc dac(2 góc tg ứng)
xét tam giác cai và tam giác dai có
ca=da(gt)
góc cae=góc dac(cmt)
ai chung
=>tam giác cai =tam giác dai(cgc)
=>ci=di(2 cạnh tg ứng)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó ΔAHB=ΔAHC
b: Xét ΔABC có
H là trung điểm của BC
HD//AC
Do đó: D là trung điểm của AB
Ta có: ΔHDA vuông tại H
mà HD là đường trung tuyến
nên DA=DH
c: Xét ΔABC có
CD là đường trung tuyến
AH là đường trung tuyến
CD cắt AH tai G
Do đó: G là trọng tâm
=>B,G,E thẳng hàng