Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này dễ mà. Bạn tham khảo cách chứng minh định lí ở bài 3 TÍNH CHẤT ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC ( SGK Toán 8 tập hai - T65) nhé!
Bài 1)
a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)
Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật
b) Câu này không đúng rồi bạn
Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân
Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)
c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông
\(AB^2=BC.BH=13.4\)
\(\Rightarrow AB=2\sqrt{13}\)
\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)
Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)
Bài 2)
a) \(ED=AD-AE=17-8=9\)
Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy
\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)
Vậy \(\Delta ABE~\Delta DEC\)
b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)
c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông
Nên BK = AD và AB = DK
\(\Rightarrow KC=DC-DK=12-6=6\)
Theo định lý Pytago ta có
\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)
a) Xét \(\Delta CEF\)và \(\Delta CAB\)có:
\(\widehat{CFE}=\widehat{CBA}\left(=90^0\right)\).
\(\widehat{BCA}\)chung.
\(\Rightarrow\Delta CEF~\Delta CAB\left(g.g\right)\)(điều phải chứng minh).
b) Xét \(\Delta ABC\)và \(\Delta FBK\)có:
\(\widehat{KBC}\)chung.
\(\widehat{BAC}=\widehat{BFK}\left(=90^0\right)\).
\(\Rightarrow\Delta ABC~\Delta FBK\left(g.g\right)\).
\(\Rightarrow\frac{BA}{BF}=\frac{BC}{BK}\)(tỉ số đồng dạng).
\(\Rightarrow BA.BK=BF.BC\)(điều phải chứng minh).