\(\Delta ABC\), AK là trung tuyến. Kẻ AM \(\perp\) AC và...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

vẽ thêm MN là tia đối của tia AM sau đó cm AN=EF

22 tháng 11 2017

A B C M N J G K I

a) Ta thấy \(\widehat{MAC}=\widehat{MAB}+\widehat{BAC}=90^o+\widehat{BAC}=\widehat{CAN}+\widehat{BAC}=\widehat{BAN}\)

Xét tam giác MAC và BAN có:

AM = AB

AC = AN

\(\widehat{MAC}=\widehat{BAN}\)

\(\Rightarrow\Delta MAC=\Delta BAN\left(c-g-c\right)\)

b) Do \(\Delta MAC=\Delta BAN\Rightarrow MC=BN\) (Hai cạnh tương ứng)

Ta cũng có \(\widehat{AMC}=\widehat{ABN}\)

Gọi giao điểm của AB và MC là J, của MC và BD là G.

Xét tam giác vuông MAJ ta có \(\widehat{AMJ}+\widehat{MJA}=90^o\)

Mà \(\widehat{AMJ}=\widehat{JBG};\widehat{MJA}=\widehat{BJG}\) (Hai góc đối đỉnh)

nên \(\widehat{JBG}+\widehat{BJG}=90^o\Rightarrow\widehat{JGB}=90^o\) hay \(MC\perp BN\)

c) Ta thấy ngay \(\Delta AMK=\Delta ABI\left(c-g-c\right)\Rightarrow AK=AI\) (Hai cạnh tương ứng)

Ta cũng có \(\Delta AIN=\Delta AKC\left(c-c-c\right)\Rightarrow\widehat{IAN}=\widehat{KAC}\)

Vậy thì \(\widehat{IAK}=\widehat{IAC}+\widehat{CAK}=\widehat{IAC}+\widehat{IAN}=\widehat{CAN}=90^o\)

Suy ra \(AI\perp AK\)

8 tháng 1 2019

a)  Xét tgiac KBP và tgiac KCA có:

KB = KC

góc BKP = góc CKA (dd)

KP = KA

suy ra:  tgiac KBP = tgiac KCA  (c.g.c)

=> góc KBP = góc KCA

mà 2 góc này so le trong

=> BP // AC

8 tháng 1 2019

b) tgiac KBP = tgiac KCA 

=> BP  =  AC

 AM vuông góc với AC, BP // AC

=> AM vuông góc với BP

Ta có:  AN vuông góc với AB, AM vuông góc với BP

=> góc NAM = góc ABP

Xét tgiac NAM và tgiac ABP có: 

AN = BA

góc NAM = góc ABP

AM = BP (=AC)

suy ra: tgiac NAM = tgiac ABP  (c.g.c)

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0
12 tháng 12 2016

AI GIÚP MÌNH VỚI! khocroi

15 tháng 12 2016

MÌNH NHẦM

CÂU a LÀ CHỨNG MINH TAM GIÁC EIB=AIE

7 tháng 12 2019

lolang