Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đo:ΔABC đồng dạng với ΔHBA
c: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay AD/AC=AE/AB
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=15\cdot40=600\left(cm^2\right)\)
DE=AH=24cm
Xét ΔADE vuông tại A và ΔACB vuông tại A có
AD/AC=AE/AB
Do đo: ΔADE đồng dạng với ΔACB
Suy ra: \(\dfrac{S_{ADE}}{S_{ACB}}=\left(\dfrac{DE}{CB}\right)^2=\left(\dfrac{24}{50}\right)^2=\dfrac{144}{625}\)
hay \(S_{ADE}=138.24\left(cm^2\right)\)
a: Xét ΔAHE có
AC là đường cao
AC là đường trung tuyến
Do đó: ΔAHE cân tại A
=>AC là phân giác của góc HAE
Xét ΔAHC và ΔAEC có
AH=AE
góc HAC=góc EAC
AC chung
Do đó: ΔAHC=ΔAEC
Suy ra: góc AEC=90 độ
=>AE vuông góc với CE
b:Ta có; AB<AC
nên góc C<góc B
=>90 độ-góc C>90 độ-góc B
=>góc CAH>góc BAH