\(\Delta ABC\) , ∠A = 90o (AB<AC) , AH\(\perp\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2021

Cần ý d :>

9 tháng 3 2018

A B C E G n D

ý a dễ rồi bn tự làm.

b) Do GC//AD\(\Rightarrow\frac{GC}{AD}=\frac{GE}{DE}=\frac{CE}{AE}\left(1\right)\)

Do EG//BC \(\Rightarrow\frac{AD}{DB}=\frac{AE}{CE}=\frac{DE}{BC}\left(2\right)\)

Từ (1) và (2) => \(\frac{DA}{DB}=\frac{DE}{GE}=DA.GE=DB.DE\)

c) \(\widehat{GEC}=\widehat{AED}\left(đđ\right)\)

\(\widehat{AED}=\widehat{ACB}\)

\(\Rightarrow\widehat{GEC}=\widehat{ACB}\)

Xét \(\Delta GEC\)và \(\Delta ACB\)

\(\widehat{CCA}=\widehat{CAB}\)

\(\widehat{GEC}=\widehat{ACB}\)

=> đpcm (khúc c mk cũng chưa chắc)

16 tháng 5 2019

a) Xét \(\Delta EDC\)và \(\Delta BAC\)

có \(\widehat{EDC}=\widehat{BAC}\left(=90^0\right)\)

\(\widehat{ACB}\)chung

nên \(\Delta EDC\)\(\Delta BAC\)(g - g)

\(\Rightarrow\frac{EC}{BC}=\frac{CD}{AC}\Rightarrow\frac{EC}{CD}=\frac{BC}{AC}\)

Xét \(\Delta BEC\)và \(\Delta ADC\)

có \(\frac{EC}{CD}=\frac{BC}{AC}\)

\(\widehat{ACB}\)chung

nên \(\Delta BEC\)\(\Delta ADC\)(c - g - c)

Xét \(\Delta AHD\)

ta có AH = HD suy ra \(\Delta AHD\)cân tại H

mà  \(\widehat{HAD}=90^0\)nên \(\Delta AHD\)vuông cân tại H

suy ra \(\widehat{ADH}=45^0\)

Gọi giao điểm của AD và BE là O

Xét \(\Delta AOE,\Delta BOD\)

có \(\widehat{OAE}=\widehat{OBD}\)(\(\Delta BEC\)\(\Delta ADC\))

\(\widehat{AOE}=\widehat{BOD}\)(đối đỉnh)

nên \(\Delta AOE\)\(\Delta BOD\)(g - g)

\(\Rightarrow\widehat{AEB}=\widehat{ADH}=45^0\)

Xét \(\Delta ABE\)vuông tại A

có \(\widehat{AEB}=45^0\)nên \(\Delta ABE\)vuông cân tại A

suy ra BE = 2\(\sqrt{AB}\)=\(2\sqrt{2}\)(cm)

b) Gọi giao điểm của AH và BE là I 

dễ chứng minh \(\Delta HBA\)\(\Delta ABC\)(g - g)

\(\Rightarrow\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\)

có AB = 2 cm, BE = \(2\sqrt{2}\left(cm\right)\)

\(\Rightarrow\frac{AB}{BE}=\frac{1}{\sqrt{2}}\Rightarrow\frac{AB^2}{BE^2}=\frac{1}{2}\Rightarrow\frac{BH\cdot BC}{BE^2}=\frac{1}{2}\)

\(\Rightarrow\frac{BH}{BE}\cdot\frac{BC}{BE}=\frac{1}{2}\Rightarrow\frac{BH}{BE}=\frac{1}{2}\cdot\frac{BE}{BC}\Rightarrow\frac{BH}{BE}=\frac{BM}{BC}\)

Xét \(\Delta BHM\)và \(\Delta BEC\)

có \(\frac{BH}{BE}=\frac{BM}{BC}\)

\(\widehat{EBC}\)chung

nên \(\Delta BHM\)\(\Delta BEC\)(c - g - c)

\(\Rightarrow\widehat{IMH}\left(\widehat{BMH}\right)=\widehat{BCE}\)

mà \(\widehat{BCE}=\widehat{IAB}\)(cùng phụ với góc \(\widehat{B}\))

\(\Rightarrow\widehat{IMH}=\widehat{IAB}\)

dễ cm \(\Delta IAB\)\(\Delta IMH\)(g - g)

\(\Rightarrow\widehat{AHM}\left(\widehat{IHM}\right)=\widehat{IBA}=45^0\)

c) có AK là phân giác \(\Delta ABC\)

nên \(\frac{BK}{KC}=\frac{AB}{AC}\Rightarrow\frac{BK}{KC+BK}=\frac{AB}{AB+AC}\Rightarrow\frac{BK}{BC}=\frac{AB}{AB+AC}\)(1)

dễ cm \(\Delta ABH\)\(\Delta CAH\)(g - g)

\(\Rightarrow\frac{AB}{AC}=\frac{AH}{HC}\Rightarrow\frac{AB}{AB+AC}=\frac{AH}{AH+HC}\Rightarrow\frac{AB}{AB+AC}=\frac{HD}{AH+HC}\)(2)

từ (1) và (2) suy ra

\(\frac{BK}{BC}=\frac{HD}{AH+HC}\)

a: Xét ΔBAC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

hay \(AH^2=HD\cdot HC\)

20 tháng 4 2018

a) ADĐL pitago vào tam giác vuông DCB , có :

BC2 + DC2 = DB2

=> 62 + 82 = BD2

=> BD2 = 100

=> BD = 10 cm

b)

Xét tam giác ADB và tam giác AHD , có :

A^ = H^ = 90O

D^ ; góc chung

=> tam giác AHD ~ tam giác BAD (g.g)

c)

Vì tam giác AHD ~ tam giác BAD ( câu b )

=> \(\dfrac{AD}{HD}\)= \(\dfrac{BD}{AD}\)

=> AD2 = HD . BD

d)

20 tháng 4 2018

a) ΔABD vuông tại A (ABCD là hình chữ nhật)

⇒DB2=AB2+AD2(Đinh lí pitago)

DB2=82+62

⇔DB=\(\sqrt{100}\)=10(cm)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đo:ΔABC đồng dạng với ΔHBA

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay AD/AC=AE/AB

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=15\cdot40=600\left(cm^2\right)\)

DE=AH=24cm

Xét ΔADE vuông tại A và ΔACB vuông tại A có

AD/AC=AE/AB

Do đo: ΔADE đồng dạng với ΔACB

Suy ra: \(\dfrac{S_{ADE}}{S_{ACB}}=\left(\dfrac{DE}{CB}\right)^2=\left(\dfrac{24}{50}\right)^2=\dfrac{144}{625}\)

hay \(S_{ADE}=138.24\left(cm^2\right)\)