\(\Delta\) ABC , 2 đường phân giác BD, CE cắt nhau tại I.

a_CMR:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

a) Sử dụng tính chất đường phân giác (đường phân giác $BD, AI$) ta có:

\(\bullet \frac{AD}{DC}=\frac{AB}{BC}\Rightarrow \frac{AD}{AD+DC}=\frac{AD}{AC}=\frac{AB}{BC+AB}\)

\(\Rightarrow AD=\frac{AB.AC}{BC+AB}(1)\)

\(\bullet \frac{BI}{ID}=\frac{AB}{AD}\Rightarrow \frac{BI}{ID+BI}=\frac{BI}{BD}=\frac{AB}{AD+AB}(2)\)

Từ \((1);(2)\Rightarrow \frac{BI}{BD}=\frac{AB}{\frac{AB.AC}{BC+AB}+AB}=\frac{BC+AB}{AC+BC+AB}\) (đpcm)

b)

\(BI.IC=\frac{1}{2}BD.CI\Leftrightarrow \frac{BI}{BD}=\frac{1}{2}\)

\(\Leftrightarrow \frac{AB+BC}{AB+BC+AC}=\frac{1}{2}\)

\(\Leftrightarrow AC=AB+BC\) (trái với BĐT tam giác ) nên bạn xem lại đề.

AH
Akai Haruma
Giáo viên
25 tháng 6 2019

Lời giải:

a) Sử dụng tính chất đường phân giác (đường phân giác $BD, AI$) ta có:

\(\bullet \frac{AD}{DC}=\frac{AB}{BC}\Rightarrow \frac{AD}{AD+DC}=\frac{AD}{AC}=\frac{AB}{BC+AB}\)

\(\Rightarrow AD=\frac{AB.AC}{BC+AB}(1)\)

\(\bullet \frac{BI}{ID}=\frac{AB}{AD}\Rightarrow \frac{BI}{ID+BI}=\frac{BI}{BD}=\frac{AB}{AD+AB}(2)\)

Từ \((1);(2)\Rightarrow \frac{BI}{BD}=\frac{AB}{\frac{AB.AC}{BC+AB}+AB}=\frac{BC+AB}{AC+BC+AB}\) (đpcm)

b)

\(BI.IC=\frac{1}{2}BD.CI\Leftrightarrow \frac{BI}{BD}=\frac{1}{2}\)

\(\Leftrightarrow \frac{AB+BC}{AB+BC+AC}=\frac{1}{2}\)

\(\Leftrightarrow AC=AB+BC\) (trái với BĐT tam giác ) nên bạn xem lại đề.

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Qchứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)= \(\frac{1}{a}\)2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE3) cho tam giác ABC vuông...
Đọc tiếp

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Q

chứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)\(\frac{1}{a}\)

2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE

3) cho tam giác ABC vuông tại A, đường cao AH, phân giác góc ABC cắt đường cao AH tại E cắt AC tại D.

chứng minh rằng \(\frac{AE}{EH}=\frac{DC}{DA}\)

4) cho tam giác ABC, M là điểm thuộc cạnh BC. Chứng minh: AM.BC<AM.MC+AC.MB

5) cho tam giác ABC vuông tại A ( góc B lớn hơn góc C). lấy điểm D trên cạnh AC sao cho góc ABD bằng góc C.

chứng minh \(\frac{1}{BD^2}+\frac{1}{BC^2}=\frac{1}{AB^2}\)

giúp mình với :3. mình sắp thi rồi

p/s không biết làm bài nào chứ không phải lười đâu :((

0
20 tháng 4 2021

A B C P M N

20 tháng 4 2021

a) Xét \(\Delta ABC\)có:

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)(định lí).

\(\Rightarrow\left(\widehat{BAC}+\widehat{ABC}\right)=180^0-\widehat{ACB}\).

Xét \(\Delta PAB\)có:

\(\widehat{APB}+\widehat{PAB}+\widehat{ABP}=180^0\)(định lí).

\(\Rightarrow\widehat{APB}=180^0-\left(\widehat{PAB}+\widehat{ABP}\right)\).

\(\Rightarrow\widehat{APB}=180^0-\frac{\widehat{BAC}+\widehat{ABC}}{2}\).

\(\Rightarrow\widehat{APB}=180^0-\frac{180^0-\widehat{ACB}}{2}\).

\(\Rightarrow\widehat{APB}=90^0+\frac{\widehat{ACB}}{2}\)(điều phải chứng minh).

Ta lại có:

\(\widehat{AMP}=\widehat{MPC}+\widehat{MCP}\)(tính chất góc ngoài của \(\Delta MPC\)).

\(\Rightarrow\widehat{AMP}=90^0+\frac{\widehat{ACB}}{2}\).

Do đó \(\widehat{APB}=\widehat{AMP}\left(=90^0+\frac{\widehat{ACB}}{2}\right)\).

Xét \(\Delta MAP\)và \(\Delta PAB\)có:

\(\widehat{AMP}=\widehat{APB}\)(chứng minh trên).

\(\widehat{MAP}=\widehat{PAB}\)(giả thiết).

\(\Rightarrow\Delta MAP~\Delta PAB\left(g.g\right)\).

\(\Rightarrow\frac{AP}{AB}=\frac{AM}{AP}\)(tỉ số đồng dạng).

\(\Rightarrow AB.AM=AP.AP=AP^2\)(điều phải chứng minh).