Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải của bạn Thái và Hà chưa hợp lý, còn lời giải của bạn An hợp lý, vì :
- Hai bạn Thái và Hà phân tích đa thức thành nhân tử chưa triệt để, vì ở lời giải của hai bạn, có nhân tử vẫn phân tích được tiếp.
- Còn ở bạn An thì phân tích đã hợp lý, vì trong các nhân tử, không có nhân tử nào phân tích được tiếp.
dài lắm nên mình làm tắt
1) (x - 5)^2 + (x + 3)^2 = 2(x - 4)(x + 4) - 5x + 7
<=> x^2 - 10x + 25 + x^2 + 6x + 9 = 2x^2 + 8x - 8x - 32 - 5x + 7
<=> 2x^2 - 4x + 34 = 2x^2 - 5x - 25
<=> -4x + 34 = -5x - 25
<=> x + 34 = -25
<=> x = -25 - 34
<=> x = - 59
2) (x + 3)(x - 2) - 2(x + 1)^2 = (x - 3)^2 - 2x^2 + 4x
<=> x^2 - 2x + 3x - 6 - 2x^2 - 4x - 2 = x^2 - 6x + 9 - 2x^2 + 4x
<=> -x^2 - 3x - 8 = -x^2 - 2x + 9
<=> -3x - 8 = -2x + 9
<=> -x - 8 = 9
<=> -x = 9 + 8
<=> x = -17
3) (x + 1)^3 - (x + 2)(x - 4) = (x - 2)(x^2 + 2x + 4) + 2x^2
<=> x^3 + 2x^3 + x + x^2 + 2x + 1 - x^2 + 4x - 2x + 8 = x^3 + 2x^2 + 4x - 2x^2 - 4x - 8 + 2x^2
<=> 2x^2 + 5x + 9 = 2x^2 - 8
<=> 5x + 9 = -8
<=> 5x = -8 - 9
<=> 5x = -17
<=> x = -17/5
4) (x - 2)^3 + (x - 5)(x + 5) = x(x^2 - 5x) - 7x + 3
<=> x^3 - 4x^2 + 4x - 2x^2 + 8x - 8 + x^2 - 5^2 = x^3 - 5x^2 - 7x + 3
<=> 12x - 33 = -7x + 3
<=> 19x - 33 = 3
<=> 19x = 3 + 33
<=> 19x = 36
<=> x = 36/19
5) (x + 4)(x^2 - 4x + 16) - x(x - 4)^2 = 8(x - 3)(x + 3)
<=> x^3 - 4x^2 + 16x + 4x^2 - 16x + 64 - x^3 + 8x^2 - 16x = 8x^2 - 72
<=> -16x + 64 = -72
<=> -16x = -72 - 64
<=> -16x = -136
<=> x = 136/16 = 17/2
6) 4(x - 1)(x + 2) - 5(x + 7) = (2x + 3)^2 - 5x + 3
<=> 4x^2 + 8x - 4x - 8 - 5x - 35 = 4x^2 + 12x + 9 - 5x + 3
<=> -x - 43 = 7x + 12
<=> -8x - 43 = 12
<=> -8x = 12 + 43
<=> -8x = 55
<=> x = -55/8
7) (x - 1)(x^2 + x + 1) + 3(x - 2)^2 = x(x^2 + 3x - 1)
<=> x^3 + x^2 + x - x^2 - x - 1 + 3x^2 - 12x + 12 = x^3 + 3x^2 - x
<=> 3x^2 - 12x + 11 = 3x^2 - x
<=> -12x + 11 = -x
<=> 11 = -x + 12x
<=> 11 = 11x
<=> x = 1
8) (x + 5)(x - 5) - (x + 3)(x^2 - 3x + 9) = 5 - x(x^2 - x - 2)
<=> x^2 - 25 - x^3 + 3x^2 - 9 - 3x^2 + 9x - 27 = 5 - x^3 + x^2 + 2x
<=> -52 - x^3 = 5 - x^3 + 2x
<=> -52 = 5x + 2x
<=> -5x - 2x = 52
<=> -7x = 52
<=> x = -52/7
9) (x + 2)^2 - 2(x + 3)(x - 4) = 5 - x(x - 3)
<=> x^2 + 4x + 4 - 2x^2 + 8x - 6x + 24 = 5 - x^3 + 3x
<=> 6x + 28 = 5 + 3x
<=> 6x + 28 - 3x = 5
<=> 3x + 28 = 5
<=> 3x = 5 - 28
<=> 3x = -23
<=> x = -23/3
10) (x + 7)(x - 7) - (x + 2)^2 = 5(x - 2) + (x - 7)
<=> x^2 - 49 - x^2 - 4x - 4 = 5x - 10 + x - 7
<=> -53 - 4x = 6x - 17
<=> -4x = 6x + 36
<=> -4x - 6x = 36
<=> -10x = 36
<=> x = -36/10 = -18/5
a) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)
\(\Leftrightarrow-15x^2+46x-35+15x^2-4x-4=4\)
\(\Leftrightarrow42x-39=4\)
\(\Leftrightarrow42x=4+39\)
\(\Leftrightarrow42x=43\)
\(\Leftrightarrow x=\frac{43}{42}\)
\(\Rightarrow x=\frac{43}{42}\)
b) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+3\right)x=14\)
\(\Leftrightarrow x^3+8-x^4-3x=14\)
\(\Leftrightarrow x^3+8-x^4-3x=14-14\)
\(\Leftrightarrow-x^4+x^3-3x-6=0\)
=> x k có gt thỏa mãn
a) \(3A=\frac{6x-9}{3x-2}=\frac{2\left(3x-2\right)-5}{3x-2}=2-\frac{5}{3x-2}\)
A nguyên <=> 3A nguyên <=> 5/3x-2 nguyên ( 2 nguyên rồi) <=> 3x-2 thuộc Ư(5) <=> 3x-2 thuộc (+-1; +-5)
đến đây lập bảng xét giá trị nha
b) \(2B=\frac{2x-2}{x^2+1}=\frac{x^2+1-\left(x^2-2x+1+2\right)}{x^2+1}=1-\frac{\left(x+1\right)^2+2}{x^2+1}\)
bài này mình chỉ làm tìm Min, Max thôi chứ kiểu này thì mình nghĩ k tìm đc giá trị nguyên đâu
\(D=\dfrac{2x+4}{3x-1}\\ =>3D=\dfrac{6x+12}{3x-1}=\dfrac{2\left(3x-1\right)+14}{3x-1}=2+\dfrac{14}{3x-1}\)
Để 3D nguyên thì : \(\dfrac{14}{3x-1}\in Z\)
\(=>14⋮\left(3x-1\right)\\ =>3x-1\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
\(=>3x\in\left\{2;0;3;-1;8;-6;15;-13\right\}\\ =>x\in\left\{\dfrac{2}{3};0;1;-\dfrac{1}{3};\dfrac{8}{3};-2;5;-\dfrac{13}{3}\right\}\)
Mà x nguyên \(=>x\in\left\{0;1;-2;5\right\}\)
Do những giá trị trên chỉ là 3D nguyên nên chưa chắc D đã nguyên
Vậy thử lại thay từng giá trị x vào bt D
Kết luận : \(x\in\left\{0;1;-2;5\right\}\)