Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: EF=5cm
b: Xét ΔMDF vuông tại D và ΔMDC vuông tại D có
MD chung
FD=CD
Do đó:ΔMDF=ΔMDC
c: Xét ΔECF có
ED là đường cao
ED là đường trung tuyến
Do đó;ΔECF cân tại E
tham khảo
a: EF=5cm
b: Xét ΔMDF vuông tại D và ΔMDC vuông tại D có
MD chung
FD=CD
Do đó:ΔMDF=ΔMDC
c: Xét ΔECF có
ED là đường cao
ED là đường trung tuyến
Do đó;ΔECF cân tại E
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC
b: ta có: ABCD là hình bình hành
nên CD//AB
hay CD\(\perp\)AC
c: Xét tứ giác ABNC có
AB//NC
NB//AC
Do đó: ABNC là hình bình hành
SUy ra: CN=AB
Xét ΔABM vuông tại A và ΔCNM vuông tại C có
AB=CN
AM=CM
Do đó: ΔABM=ΔCNM
a: Xét ΔBED vuông tại E và ΔCFD vuông tại F có
DB=DC
góc B=góc C
DO đó: ΔBED=ΔCFD
Suy ra: BE=CF
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
Do đó: ΔAED=ΔAFD
Suy ra: AE=AF và DE=DF
=>AD là đường trung trực của EF
c: Xét ΔEFM có
FD là đuòng trung tuyến
FD=EM/2
Do đó: ΔFEM vuông tại F
a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)
hay\(5^2=3^2+DF^2\)
\(\Rightarrow DF^2=5^2-3^2=25-9=16\)
\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)
Ta có:\(DE=3cm\)
\(DF=4cm\)
\(EF=5cm\)
\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)
b)Xét\(\Delta DEF\)và\(\Delta DKF\)có:
\(DE=DK\)(\(D\)là trung điểm của\(EK\))
\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)
\(DF\)là cạnh chung
Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)
\(\Rightarrow EF=KF\)(2 cạnh t/ứ)
Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)
Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)
c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
Ta lại có:\(DF\)cắt\(KI\)tại\(G\)
mà\(DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)
\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))
\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)
Vậy\(GF\approx2,7cm\)
A B C E D I
Cm: Ta có : góc BAC + góc CAD = 1800 (kề bù)
=> góc CAD = 1800 - góc BAC = 1800 - 900 = 900 (1)
Và AD = AE (gt) (2)
Từ (1) và (2) suy ra t/giác AED là t/giác vuông cân tại A
b) Xét t/giác ABE và t/giác ACD
có AB = AC (gt)
góc BAC = góc CAD = 900(cmt)
AE = AD (gt)
=> t/giác ABE = t/giác ACD (c.g.c)
=> BE = CD (hai cạnh tương ứng)
c) Gọi giao điểm của BE và DC là I
tự làm
d) tự làm
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
DO đó: ΔABE=ΔADE
b: Ta có: ΔABD cân tại A
mà AI là đường phân giác
nên I là trung điểm của BD
a: EF=5cm
b: Xét ΔMDF vuông ạti D và ΔMDC vuông tại D có
MD chung
DF=DC
DO đo: ΔMDF=ΔMDC
c: Xét ΔECF có
ED là đường cao
ED là đường trung tuyến
Do đó: ΔECF cân tại E