Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân
Bạn ơi có đáp án câu này không mình xin với. Mình cũng đang học
sao hả bạn bạn biết thì trả lời giúp mình còn ko thì đừng hỏi vớ vẩn nhé
A B C D O I K G H M N
a) Nếu góc HAG =45 độ
Xét tam giác IAK và tam giác IDH
có: \(\widehat{IAK}=\widehat{IDH}=45^o\)
\(\widehat{DIH}=\widehat{AIK}\)( đối đỉnh)
=> \(\Delta IAK~\Delta IDH\)
=> \(\frac{IA}{ID}=\frac{IK}{IH}\)
Xét tam giác AID và tam giác KIH có :
\(\frac{IA}{ID}=\frac{IK}{IH}\)
\(\widehat{AID}=\widehat{KIH}\)( đối đỉnh)
=> \(\Delta AID~\Delta KIH\Rightarrow\widehat{IHK}=\widehat{IDA}=45^o\)=> \(\widehat{KHA}=45^o\)
Xét tam giác AKH có : \(\widehat{KAH}=\widehat{AHK}=45^o\)
=> Tam giác HAK vuông cân tại K
b) Gọi N là giao điểm của MG và DC
AH//MG => \(\widehat{AHD}=\widehat{MNC}\)( đồng vị)
AB//DC => \(\widehat{BMG}=\widehat{MNC}\)(so le trong)
Từ 2 điều trên suy ra \(\widehat{AHD}=\widehat{BMG}\)
Xét 2tam giác vuông ADH và GBM có:\(\widehat{AHD}=\widehat{BMG}\)
=> \(\Delta ADH~\Delta GBM\)=> \(\frac{DH}{BM}=\frac{AD}{BG}\)
Đặt cạnh hình vuông bằng a
=> \(DH.BG=a.\frac{a}{2}=\frac{a^2}{2}=DO.BO\)
Vì DO=BO=1/2 BC=1/2.\(\sqrt{a^2+a^2}=\frac{1}{2}.a\sqrt{2}\)
=> \(\frac{DH}{BO}=\frac{DO}{BG}\)
Xét tam giác DHO và tam giác BOG có:
\(\frac{DH}{BO}=\frac{DO}{BG}\)
và \(\widehat{ODH}=\widehat{GBO}\)
=> tam giác DHO đồng dạng tam giác BOG
=>\(\widehat{BOG}=\widehat{OHD}\)
Ta lại có: \(\widehat{BOH}=\widehat{ODH}+\widehat{OHD}=\widehat{ODH}+\widehat{BOG}\)( góc ngoài tam giác DOH)
Mặt khác \(\widehat{BOH}=\widehat{BOG}+\widehat{GOH}\)
=> \(\widehat{GOH}=\widehat{ODH}=45^o\)
=> góc HOG không đổi
a) Xét ΔBDC có
M là trung điểm của BC(gt)
N là trung điểm của BD(gt)
Do đó: MN là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//DC và \(MN=\dfrac{DC}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay 2MN=CD(đpcm)
b) Xét ΔABC có
M là trung điểm của BC(gt)
K là trung điểm của AC(gt)
Do đó: MK là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: MK//AB và \(MK=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay AB=2MK
mà CD=2MN(cmt)
va AB=CD(gt)
nên MK=MN
Xét ΔMKN có MK=MN(cmt)
nên ΔMKN cân tại M(Định nghĩa tam giác cân)