\(\dfrac{2a+b+c+d}{a}\) =\(\dfrac{a+2b+c+d}{b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2022

Ta có:

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

⇔ \(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1\)

    \(=\dfrac{a+b+c+2d}{d}-1\)

⇔ \(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)

Nếu a+b+c+d=0

⇒a+b=−(c+d);c+b=−(a+d);c+d=−(a+b);a+d=−(c+b)

Thay vào M, ta có:

\(M=\dfrac{a+b}{-\left(a+b\right)}=\dfrac{b+c}{-\left(b+c\right)}=\dfrac{c+d}{-\left(c+d\right)}=\dfrac{a+d}{-\left(a+d\right)}=-1\)

Nếu a+b+c+d ≠0

⇒ \(a=b=c=d\)

Thay vào M, ta có

\(M=\dfrac{a+b}{a+b}=\dfrac{b+c}{b+c}=\dfrac{c+d}{c+d}=\dfrac{d+a}{d+a}=1\)

4 tháng 1 2022

Cắt cu 77

 

10 tháng 3 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{2a+b+c+d-a-2b-c-d}{a-b}=1\)

\(\Rightarrow\left\{\begin{matrix}-a=b+c+d\\-b=a+c+d\\-c=b+c+d\\-d=a+b+c\end{matrix}\right.\)\(\Rightarrow a=b=c=d\)

\(M=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{a+d}{b+c}\)

\(\Rightarrow M=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}\)

\(\Rightarrow M=1+1+1+1\)

\(\Rightarrow M=4\)

Vậy \(M=4\)

24 tháng 4 2017

thiếu 1 th nhá bạn

10 tháng 10 2017

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

\(\Rightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu \(a+b+c+d\ne0\Rightarrow a=b=c=d\)

\(\Rightarrow M=1+1+1+1=4\)

Nếu a + b + c + d = 0 => a + b = -(c + d) ; (b + c) = -(a + d) ; c + d = -(a+b) ; d + a = -(b + c)

\(\Rightarrow M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy M = 4 hoặc M = -4

5 tháng 10 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}=\dfrac{2a+b+c+d-a-2b-c-d}{a-b}=1\)

\(\Rightarrow\left\{{}\begin{matrix}-a=b+c+d\\-b=a+c+d\\-c=b+c+d\\-d=a+b+c\end{matrix}\right.\Rightarrow a=b=c=d\)

\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{a+d}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\)

\(\Rightarrow M=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}\)

\(\Rightarrow M=1+1+1+1\)

\(\Rightarrow M=4\)

Vậy .......

Chúc bạn học tốt!

5 tháng 4 2018

Thiếu trường hợp r bn khi a + b + c + d = 0 thì M = -4

bn phải xét a + b + c + d = 0 và a + b + c + d ≠ 0 khi đó mới đc dùng tính chất dãy tỉ số bằng nhau nha

khi a + b + c + d = 0

⇒ a + b = -(c + d)

a + d = -(b + c)

\(\Rightarrow M=\dfrac{a+b}{-\left(a+b\right)}+\dfrac{-\left(a+d\right)}{a+d}+\dfrac{-\left(a+b\right)}{a+b}+\dfrac{a+d}{-\left(a+d\right)}\)\(\Rightarrow M=-4\)

13 tháng 9 2017

nhanh lên các bạn ơi ai làm đúng mk tickhahaokleuleu

26 tháng 11 2017

Theo đề bài, ta có:

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

\(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)

\(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\) vì a,b,c,d khác 0

\(\Rightarrow a=b=c=d\)

\(\Rightarrow M=1+1+1+1=4\)

25 tháng 4 2018
https://i.imgur.com/9OmkpIy.jpg

Câu 2:

Để C là số nguyên thì \(\sqrt{x}-1+5⋮\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-1\in\left\{1;-1;5\right\}\)

hay \(x\in\left\{4;0;36\right\}\)

12 tháng 11 2018

a) ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{4c}{4d}=\dfrac{a+4c}{b+4d}\left(đpcm\right)\)

b;c;d tương tự hết

19 tháng 11 2022

b: a/b=c/d

nên 3a/3b=2c/2d

=>a/b=c/d=(3a+2c)/(3b+2d)

c: a/c=b/d nên a/c=2b/2d=(a-2b)/(c-2d)

d: a/c=b/d

nên 5a/5c=2b/2d

=>a/c=b/d=(5a-2b)/(5c-2d)