\(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\) . Chứng mi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

đầu tiên bạn cm mấy cái tử đó khác 0 (cái x^2-yz...)     sau đó dùng dãy tỉ số để tạo ra tử là a^2-bc và tương tự vs 2 cái còn lại 

=> 2 cái đó = nhau

14 tháng 12 2015

Thử tiếp này \(\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\)

=> \(\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right)\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-xz\right)\left(z^2-xy\right)}\)

 

14 tháng 12 2015

Có \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)

=> \(\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\)

=> \(\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right).\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-xz\right).\left(z^2-xy\right)}\)

\(=\frac{b^2}{\left(y^2-xz\right)^2}=\frac{ac}{\left(x^2-yz\right).\left(z^2-xy\right)}=\frac{b^2-ac}{\left(y^2-xz\right)^2-\left(x^2-yz\right).\left(z^2-xy\right)}\)

\(=\frac{c^2}{\left(z^2-xy\right)^2}=\frac{ab}{\left(x^2-yz\right).\left(y^2-xz\right)}=\frac{c^2-ab}{\left(z^2-xy\right)^2-\left(x^2-yz\right).\left(y^2-xz\right)}\)

Xét (x2 - yz)2 - (y2 - xz)(z2 - xy) 

= ...................... (Tui xét phía dưới rùi kéo xuống phía dưới mà coi)

= x(x3 + y3 + z3 - 3xyz)

Tương tự, ta có (y2-xz)2 - (x2 - yz).(z2 - xy) = y.(x3 + y3 + z3 - 3xyz)

(z2 - xy)2 - (x2 - yz).(y2 - xz) = z.(x3 + y3 + z3 - 3xyz)

=> \(\frac{a^2-bc}{x\left(x^2+y^3+z^3-3xyz\right)}=\frac{b^2-ac}{y\left(x^3+y^3+z^3-3xyz\right)}=\frac{c^2-ab}{z\left(x^3+y^3+z^3-3xyz\right)}\)

=> \(\frac{a^2-bc}{x}=\frac{b^2-ac}{y}=\frac{c^2-ab}{z}\)(Đpcm)

15 tháng 6 2018

ta có: \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)

\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{b^2}{\left(y^2-xz\right)^2}=\frac{c^2}{\left(z^2-xy\right)^2}\) (1) 

=> \(\frac{a}{\left(x^2-yz\right)}.\frac{a}{\left(x^2-yz\right)}=\frac{b}{y^2-xz}.\frac{c}{z^2-xy}=\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right).\left(z^2-xy\right)}\)

a^2/(x^2-yz)^2 = (a^2-bc)/[(x^2-yz)^2 - (y^2-xz)(z^2-xy)] = (a^2-bc)/[x (x^3 + y^3 + z^3 - 3xyz)] => 
(a^2-bc)/x = [a^2/(x^2 - yz)^2] * (x^3 + y^3 + z^3 - 3xyz) (2) 
Thực hiện tương tự ta cũng có 
(b^2-ac)/y = [b^2/(y^2 - xz)^2] * (x^3 + y^3 + z^3 - 3xyz) (3) 
(c^2-ab)/z = [c^2/(z^2 - xy)^2] * (x^3 + y^3 + z^3 - 3xyz) (4) 
Từ (1),(2),(3),(4) => (a^2-bc)/x = (b^2-ac)/y = (c^2-ab)/z.

26 tháng 8 2018

với x=y=z khác 0 và a,b,c khác nhau là 1 số bất kỳ khác 0 thì (1) thỏa mãn và (2) không thỏa mãn

=> Không thể CM

26 tháng 8 2018

ta có: \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}\)

\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-zx}=\frac{c}{z^2-xy}\) (*)

\(\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-zx\right).\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-zx\right).\left(z^2-xy\right)}\)

\(=\frac{a^2-bc}{x^4-3x^2yz+xy^3+xz^3}=\frac{a^2-bc}{x.\left(x^3-3xyz+y^3+z^3\right)}\)

\(\Rightarrow\frac{a^2-bc}{x}=\frac{a^2}{\left(x^2-yz\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

Làm tương tự như trên. ta có:

\(\frac{b^2-ca}{y}=\frac{b^2}{\left(y^2-zx\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

\(\frac{c^2-ab}{z}=\frac{c^2}{\left(z^2-xy\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

Từ (*) \(\Rightarrow\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\left(đpcm\right)\)