\(\frac{a}{b+c}\)= \(\frac{b}{c+a}\)=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

Vì a/b+c=b/c+a=c/a+b nên a/b+c+b/c+a+c/a+b= a-b+c/ b+c-c-a+a-b = a-b+c/2b hoặc = 3a/b+c=3b/c+a=3c/a+b

8 tháng 10 2017

Xét \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Rightarrow P=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}=-1+\left(-1\right)+\left(-1\right)=-3\)

Xét \(a+b+c\ne0\Rightarrow a=b=c\)

\(\Rightarrow P=\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)

6 tháng 8 2016

còn ai nữa à ==' 
đk a,b,c,d khác 0
áp dugnj tc dãy tỉ số = nhau \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2d}{a+b+c+d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}\)
+> nếu a+b+c+d =0\(\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\end{cases}\hept{\begin{cases}d+a=-\left(b+c\right)\\\end{cases}}}\)\(\Rightarrow M=-4\)
+> a+b+c+d khác 0 \(\Rightarrow\frac{2a+b+c+d}{a}=5\Rightarrow b+c+d=3a\)
Tương tự ta có \(\hept{\begin{cases}a+b+c=3d\\a+c+d=3b\\a+b+d=3c\end{cases}}\)\(\Rightarrow a=b=c=d\)
Khi đó M=4
Vậy M=4 hoặc M=-4

6 tháng 8 2016

cố lên 2 bác nha!!!

17 tháng 1 2019

\(Giai\)

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)

\(=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\Rightarrow a=b=c=d\)

\(\Rightarrow M=\frac{a+b}{c+d}=\frac{b+c}{a+d}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=\frac{a+b+b+c+c+d+d+a}{c+d+a+d+a+b+b+c}\)

\(=1?!?.Mknghĩ:M=a+b+c+d\left(chứ\right)\)

17 tháng 1 2019

Ta có \(\frac{A}{B+C+D}\)=\(\frac{B}{A+C+D}\)=\(\frac{C}{D+B+A}\)=\(\frac{D}{B+C+A}\)

=>\(\frac{A}{B+C+D}\)​+1=\(\frac{B}{A+C+D}\)+1=\(\frac{C}{D+B+A}\)+1=\(\frac{D}{B+C+A}\)+1

=>\(\frac{A+B+C+D}{B+C+D}\)=\(\frac{A+B+C+D}{A+C+D}\)=\(\frac{A+B+C+D}{D+B+A}\)=\(\frac{A+B+C+D}{A+B+C}\)

Nếu A+B+C+D=0

=>\(\hept{\begin{cases}A+B=-\left(C+D\right)\\B+C=-\left(A+D\right)\\D+A=-\left(C+B\right)\end{cases}}\)

=>M=(-1)+(-1)+(-1)+(-1)

=>M= -4

Nếu A+B+C+D khác 0

=>B+C+D=A+C+D=A+B+D=A+B+C

=>A=B=C=D

=>M=1+1+1+1=4

Vậy M= -4 hoặc M=4

           Học tốt nha bạn

7 tháng 11 2018

Đặt dãy tỷ số bằng nhau là (1)

\(\Rightarrow\left(1\right)=\frac{5\left(a+b+c+d\right)}{a+b+c+d}=5\)

\(\Rightarrow\left(1\right)=\frac{2\left(a+b\right)+3\left(c+d\right)}{c+d}=\frac{2\left(a+b\right)}{c+d}+3=5\Rightarrow\frac{\left(a+b\right)}{c+d}=1\)

Chứng minh tương tự ta tính và suy ra

\(\frac{b+c}{d+a}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)

\(\Rightarrow\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

14 tháng 3 2020

Từ giả thiết suy ra:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

* Nếu a + b + c + d = 0 thì a + b = - ( c + d ); b + c = - ( d + a ); c + d = - ( a + b ); d + a = - ( b + c )

Khi đó M = ( - 1 ) + ( - 1 ) + ( - 1 ) + ( - 1 ) = - 4

* Nếu a + b + c + d \(\ne0\) thì \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\)nên a = b = c = d

Khi đó M = 1 + 1 + 1 + 1 = 4

2 tháng 2 2018

Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1

        c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1

=> A = 1+bc+b/bc+b+1 = 1

Tk mk nha

2 tháng 2 2018

BÀI 1:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)        

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)       (thay   abc = 1)

\(=\frac{a+ab+1}{a+ab+1}=1\)

10 tháng 12 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a=b=c

=> \(A=\frac{a^{761}.b^{772}.c^{482}}{a^{2016}}=\frac{a^{761}.a^{772}.a^{482}}{a^{2016}}=1\)

10 tháng 12 2017

sửa\(=\frac{a^{2015}}{a^{2016}}=\frac{1}{a}\)

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

13 tháng 2 2020

1. \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

\(\Rightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1\)\(=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(=\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)(1)

TH1: \(a+b+c+d=0\)

\(\Rightarrow a+b=-\left(c+d\right)\)\(b+c=-\left(d+a\right)\)\(c+d=-\left(a+b\right)\)\(d+a=-\left(b+c\right)\)

\(\Rightarrow M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+2017=-4+2017=2013\)

TH2: \(a+b+c+d\ne0\)

Từ (1) \(\Rightarrow a=b=c=d\)\(\Rightarrow M=1+1+1+1+2017=4+2017=2021\)

Vậy \(M=2013\)hoặc \(M=2021\)

2. \(2n-5=2n+2-7=2\left(n+1\right)-7\)

Vì \(2\left(n+1\right)⋮n+1\)\(\Rightarrow\)Để \(2n-5⋮n+1\)thì \(7⋮n+1\)

\(\Rightarrow n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)\(\Rightarrow n\in\left\{-8;-2;0;6\right\}\)

Vậy \(n\in\left\{-8;-2;0;6\right\}\)