Cho dãy số x n xác định bởi
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2021

hãy nhớ

20 tháng 5 2021

Từ công thức truy hồi ta có: 

\(x_{n+1}>x_n,\forall n=1,2...\)

\(\Rightarrow\)dãy số \(\left(x_n\right)\) là dãy số tăng

giả sử dãy số \(\left(x_n\right)\) là dãy bị chặn trên \(\Rightarrow limx_n=x\)

Với x là nghiệm của pt ta có: \(x=x^2+x\Leftrightarrow x=0< x_1\) (vô lý)

=> dãy số \(\left(x_n\right)\) không bị chặn hay \(limx_n=+\infty\)

Mặt khác: \(\frac{1}{x_{n+1}}=\frac{1}{x_n\left(x_n+1\right)}=\frac{1}{x_n}-\frac{1}{x_n+1}\)

\(\Rightarrow\frac{1}{x_n+1}=\frac{1}{x_n}-\frac{1}{x_n+1}\)

\(\Rightarrow S_n=\frac{1}{x_1}-\frac{1}{x_{n+1}}=2-\frac{1}{x_{n+1}}\)

\(\Rightarrow limS_n=2-lim\frac{1}{x_{n+1}}=2\)

22 tháng 1 2020

Bài 1. Ta có:

\(\begin{array}{l} S = \sum\limits_{k = 1}^n {{x^{2k}}} + \sum\limits_{k = 1}^n {\dfrac{1}{{{x^{2k}}}} + 2n} \\ = {x^2}\dfrac{{1 - {x^{2n}}}}{{1 - {x^2}}} + \dfrac{1}{{{x^2}}}.\dfrac{{1 - \dfrac{1}{{{x^{2n}}}}}}{{1 - \dfrac{1}{{{x^2}}}}} + 2n\\ = \dfrac{{\left( {1 - {x^{2n}}} \right)\left( {{x^{2n + 2}} - 1} \right)}}{{\left( {1 - {x^2}} \right){x^{2n}}}} + 2n \end{array}\)

Bài 2.

Ta có:

\(\begin{array}{l} T = \dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + ... + \dfrac{{2n - 1}}{{{2^n}}}\left( 1 \right)\\ \dfrac{1}{2}T = \dfrac{1}{{{2^2}}} + \dfrac{3}{{{2^3}}} + \dfrac{5}{{{2^4}}} + ... + \dfrac{{2n - 3}}{{{2^n}}} + \dfrac{{2n - 1}}{{{2^{n + 1}}}}\left( 2 \right) \end{array}\)

\((1)-(2)\)\(\Rightarrow \dfrac{1}{2}T = \dfrac{1}{2} + \dfrac{2}{{{2^2}}} + \dfrac{2}{{{2^3}}} + ... + \dfrac{2}{{{2^n}}} - \dfrac{{2n - 1}}{{{2^{n + 1}}}}\)

\(\begin{array}{l} \Rightarrow T = 2\left[ {\dfrac{1}{2} + \dfrac{1}{2}\dfrac{{1 - {{\left( {\dfrac{1}{2}} \right)}^{n - 1}}}}{{1 - \dfrac{1}{2}}} - \dfrac{{2n - 1}}{{{2^{n + 1}}}}} \right]\\ = 1 + \dfrac{{{2^{n - 1}} - 1}}{{{2^{n - 2}}}} - \dfrac{{2n - 1}}{{{2^n}}} \end{array}\)

NV
20 tháng 11 2019

\(S=x^2+\frac{1}{x^2}+2+x^4+\frac{1}{x^4}+2+...+x^{2n}+\frac{1}{x^{2n}}+2\)

\(=\left(x^2+x^4+...+x^{2n}\right)+\left(\frac{1}{x^2}+\frac{1}{x^4}+...+\frac{1}{x^{2n}}\right)+2n\)

\(=x^2.\frac{\left(x^2\right)^{n-1}-1}{x^2-1}+\frac{1}{x^2}.\frac{\left(\frac{1}{x^2}\right)^{n-1}-1}{\frac{1}{x^2}-1}+2n\)

\(=\frac{x^{2n}-x^2}{x^2-1}+\frac{x^{2-2n}-1}{1-x^2}+2n\)

\(T=\frac{1}{2}+\frac{3}{2^2}+\frac{5}{2^3}+...+\frac{2n-3}{2^{n-1}}+\frac{2n-1}{2^n}\)

\(\Rightarrow2T=1+\frac{3}{2}+\frac{5}{2^2}+...+\frac{2n-1}{2^{n-1}}\)

\(\Rightarrow T=1+\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{n-1}}-\frac{2n-1}{2^n}\)

\(T=1+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-2}}-\frac{2n-1}{2^n}\)

\(T=1+1.\frac{\left(\frac{1}{2}\right)^{n-2}-1}{\frac{1}{2}-1}-\frac{2n-1}{2^n}=3-\frac{1}{2^{n-1}}-\frac{2n-1}{2^n}=3-\frac{1}{2^n}-\frac{n}{2^{n-1}}\)

NV
22 tháng 9 2019

\(\Leftrightarrow\left\{{}\begin{matrix}u_1=-1;u_2=3\\u_n-5u_{n-1}+6u_{n-2}=2n^2+2n+1\end{matrix}\right.\)

Bài toán này sử dụng phương pháp sai phân tuyến tính cấp 2 thì rất nhanh, nhưng lớp 11 chưa học nên đành phân tích theo dạng dãy :(

Ta cần phân tích \(2n^2+2n+1\) về dạng:

\(an^2+bn+c-5\left[a\left(n-1\right)^2+b\left(n-1\right)+c\right]+6\left[a\left(n-2\right)^2+b\left(n-2\right)+c\right]\)

\(=2an^2+\left(2b-14a\right)n+19a-7b+2c\)

Đồng nhất đa thức trên với \(2n^2+2n+1\)

\(\Rightarrow\left\{{}\begin{matrix}2a=2\\2b-14a=2\\19a-7b+2c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=8\\c=19\end{matrix}\right.\)

Đặt \(v_n=u_n-\left(n^2+8n+19\right)\) \(\Rightarrow\left\{{}\begin{matrix}v_1=-29;v_2=-36\\v_n-5v_{n-1}+6v_{n-2}=0\end{matrix}\right.\)

\(\Rightarrow v_n-3v_{n-1}=2\left(v_{n-1}-3v_{n-2}\right)\)

Đặt \(v_n-3v_{n-1}=x_n\) \(\Rightarrow\left\{{}\begin{matrix}x_2=v_2-3v_1=21\\x_n=2x_{n-1}\end{matrix}\right.\)

\(\Rightarrow x_n\) là cấp số nhân với công bội 2

\(\Rightarrow x_n=x_2.2^{n-2}=21.2^{n-2}\)

\(\Rightarrow v_n-3v_{n-1}=21.2^{n-2}\)

\(\Rightarrow v_n+\frac{21}{2}2^n=3\left(v_{n-1}+\frac{21}{2}2^{n-1}\right)\)

Đặt \(y_n=v_n+\frac{21}{2}.2^n\Rightarrow\left\{{}\begin{matrix}y_1=-8\\y_n=3y_{n-1}\end{matrix}\right.\) \(\Rightarrow y_n=-8.3^{n-1}\)

\(\Rightarrow v_n=y_n-\frac{21}{2}.2^n=-8.3^{n-1}-21.2^{n-1}\)

\(\Rightarrow u_n=v_n+\left(n^2+8n+19\right)=-8.3^{n-1}-21.2^{n-1}+n^2+8n+19\)

Bạn kiểm tra lại quá trình tính toán, sợ nhầm lẫn đâu đó

Căn bản ko biết bạn học tới đâu rồi nên làm kiểu tuần tự giống như người chưa học dãy số bao giờ.

NV
20 tháng 9 2019

\(\Leftrightarrow u_{n+1}^2-3u_n^2=2\)

Thay \(n\) bằng \(n-1\) ; \(n-2\) ... ta được:

\(u_n^2-3u_{n-1}^2=2\) \(\Rightarrow3u_n^2-3^2u_{n-1}=2.3\)

\(u_{n-1}^2-3u_{n-2}^2=2\Rightarrow3^2u_{n-1}^2-3^3u_{n-2}=2.3^2\)

.....

\(u^2_2-3u_1^2=2\Rightarrow3^{n-1}u_2^2-3^nu_1=2.3^{n-1}\)

Cộng vế với vế:

\(u_{n+1}^2-3^nu_1=2\left(1+3+3^2+...+3^{n-1}\right)\)

\(\Rightarrow u_{n+1}^2=3^n+3^n-1=2.3^n-1\)

\(\Rightarrow u_{n+1}=\sqrt{2.3^n-1}\Rightarrow u_n=\sqrt{2.3^{n-1}-1}\)

12 tháng 4 2020

Bạn sửa lại dòng thứ 5 của câu 1 giúp mình:

\(-\frac{1}{24}\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\)

2)

\(Y_n=\frac{\frac{\left(n+4\right)!}{n!}}{\left(n+2\right)!}-\frac{143}{4.n!}\)

\(=\frac{\left(n+4\right)\left(n+3\right)}{n!}-\frac{143}{4n!}\)

\(=\frac{1}{4n!}\left(2n+19\right)\left(2n-5\right)\)

\(Y_n< 0\)

<=> \(\frac{1}{4n!}\left(2n+19\right)\left(2n-5\right)\)<0

<=> \(\left(2n+19\right)\left(2n-5\right)< 0\)

<=> \(-\frac{19}{2}< n< \frac{5}{2}\)

Đối chiếu với n \(\ge\)1 và n là số tự nhiên

ta có: n = 1 hoặc n = 2

Vậy các số hạng âm của dãy số ( Y_n) là:

\(Y_1=-\frac{63}{4};Y_2=-\frac{23}{8}\)

12 tháng 4 2020

1) \(X_n=\frac{5}{4}.\frac{\left(n-2\right)!}{\left(n-4\right)!}-\frac{\left(n-1\right)!}{4!\left(n-5\right)!}+\frac{\left(n-1\right)!}{3!\left(n-4\right)!}\)

\(=\frac{5}{4}.\left(n-2\right)\left(n-3\right)-\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(n-4\right)}{24}+\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)}{6}\)

= \(\left(n-2\right)\left(n-3\right)\left(\frac{5}{4}-\frac{\left(n-1\right)\left(n-4\right)}{24}+\frac{n-1}{6}\right)\)

= \(\left(n-2\right)\left(n-3\right)\left(-\frac{n^2}{24}+\frac{3n}{8}+\frac{11}{12}\right)\)

= - \(\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\)

Để \(X_n>0\)

<=> \(\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\) < 0

<=> n \(\in\left(-2;2\right)\cup\left(3;11\right)\)

Đối chiếu đk n \(\ge\)5

ta có n \(\in\) [ 5; 11 ) và n là số tự nhiên.

Các số hạng dương là:

\(X_5;X_6;...;X_{10}\) ( tự thay vào rồi tính kết quả nhé)

VD: \(X_5=\frac{5}{4}.A^2_3-C^4_4+C^3_4=\frac{21}{2}\)

NV
15 tháng 3 2020

Bài 1:

\(a=\lim\limits_{x\rightarrow-1}\frac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\lim\limits_{x\rightarrow-1}\frac{x^4-x^3+x^2-x+1}{x^2-x+1}=\frac{5}{3}\)

\(b=\frac{1-5+1}{0}=\frac{-3}{0}=-\infty\)

\(c=\lim\limits_{x\rightarrow1}\frac{x\left(1+2x\right)\left(1+3x\right)+2x\left(1+3x\right)+3x}{x}=\lim\limits_{x\rightarrow1}\left[\left(1+2x\right)\left(1+3x\right)+2\left(1+3x\right)+3\right]=1+2+3=6\)

\(d=\lim\limits_{x\rightarrow0}\frac{5\left(1+x\right)^4-1}{5x^4+2x}=\frac{4}{0}=+\infty\)

NV
15 tháng 3 2020

Bài 2:

\(a=\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)

\(b=\lim\limits_{x\rightarrow a}\frac{x-a}{x^n-a^n}=\lim\limits_{x\rightarrow a}\frac{1}{nx^{n-1}}=\frac{1}{n.a^{n-1}}\)

\(c=\lim\limits_{x\rightarrow0}\frac{x+x^2+...+x^n-n}{x-1}=\frac{-n}{-1}=n\)

\(\left(1+x\right)\left(1+2x\right)...\left(1+nx\right)=x\left(1+2x\right)...\left(1+nx\right)+\left(1+2x\right)\left(1+3x\right)...\left(1+nx\right)\)

\(=x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+\left(1+3x\right)...\left(1+nx\right)\)

\(=...\)

\(=x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+...+nx+1\)

\(\Rightarrow\lim\limits_{x\rightarrow0}\frac{\left(1+2x\right)\left(1+3x\right)...\left(1+nx\right)-1}{x}\)

\(=\lim\limits_{x\rightarrow0}\frac{x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+...+nx}{x}\)

\(=\lim\limits_{x\rightarrow0}\left[\left(1+2x\right)...\left(1+nx\right)+2\left(1+3x\right)...\left(1+nx\right)+...+n\right]\)

\(=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)

10 tháng 3 2020

Đặt \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{n\left(n+1\right)}=A\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)

\(\Leftrightarrow A=\frac{n+1}{n+1}-\frac{1}{n+1}=\frac{n}{n+1}\)

1 tháng 2 2018

a) lim= - 1/0 = - vô cùng

d) lim x(x^99-2)+1/ x(x^49-2)+1 =lim (x^99-2)/(x^49-2)=1

NV
10 tháng 4 2020

\(a=\lim\limits_{x\rightarrow1^+}\frac{\sqrt{x-1}+\sqrt{x}-1}{\sqrt{\left(x-1\right)\left(x+1\right)}}=\lim\limits_{x\rightarrow1^+}\left(\frac{1}{\sqrt{x+1}}+\frac{x-1}{\left(\sqrt{x}+1\right)\sqrt{\left(x-1\right)\left(x+1\right)}}\right)\)

\(=\lim\limits_{x\rightarrow1^+}\left(\frac{1}{\sqrt{x+1}}+\frac{\sqrt{x-1}}{\left(\sqrt{x}+1\right)\sqrt{x+1}}\right)=\frac{1}{\sqrt{2}}+0=\frac{1}{\sqrt{2}}\)

\(b=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^{n-1}+x^{n-2}+...+x+1\right)}{\left(x-1\right)\left(x^{m-1}+x^{m-2}+...+x+1\right)}=\lim\limits_{x\rightarrow1}\frac{x^{n-1}+x^{n-2}+...+1}{x^{m-1}+x^{m-2}+...+1}=\frac{n}{m}\)

\(c=\lim\limits_{x\rightarrow1}\frac{x-1+x^2-1+...+x^n-1}{x-1}=\lim\limits_{x\rightarrow1}\frac{x-1}{x-1}+\lim\limits_{\rightarrow1}\frac{x^2-1}{x-1}+...+\lim\limits_{x\rightarrow1}\frac{x^n-1}{x-1}\)

Áp dụng kết quả câu b ta được:

\(c=\frac{1}{1}+\frac{2}{1}+...+\frac{n}{1}=1+2+..+n=\frac{n\left(n+1\right)}{2}\)

10 tháng 4 2020

Cảm ơn bạn nhé!