\(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(\dfrac{u_n}{n+1}=v_n\)

\(GT\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{u_1}{1+1}=1\\v_{n+1}=\dfrac{1}{4}v_n,\forall n\in N\text{*}\end{matrix}\right.\)

\(\Rightarrow v_n=\dfrac{1}{4}^{n-1},\forall n\in N\text{*}\)

\(\Rightarrow u_n=\left(n+1\right).\dfrac{1}{4}^{n-1},\forall n\in N\text{*}\)

18 tháng 2 2021

\(u_2=\sqrt{2}\left(2+3\right)-3=5\sqrt{2}-3\)

\(u_3=\sqrt{\dfrac{3}{2}}.5\sqrt{2}-3=5\sqrt{3}-3\)

\(u_4=\sqrt{\dfrac{4}{3}}.5\sqrt{3}-3=5\sqrt{4}-3\)

....

\(\Rightarrow u_n=5\sqrt{n}-3\)

\(\Rightarrow\lim\limits\dfrac{u_n}{\sqrt{n}}=\lim\limits\dfrac{5\sqrt{n}-3}{\sqrt{n}}=5\)

NV
29 tháng 1 2022

\(\left(n+1\right)u_{n+1}=\dfrac{1}{2}nu_n+n+2\)

\(\Leftrightarrow\left(n+1\right)u_{n+1}-2\left(n+1\right)=\dfrac{1}{2}\left[nu_n-2n\right]\)

Đặt \(n.u_n-2n=v_n\Rightarrow\left\{{}\begin{matrix}v_1=-1\\v_{n+1}=\dfrac{1}{2}v_n\end{matrix}\right.\)

\(\Rightarrow v_n=-1.\left(\dfrac{1}{2}\right)^{n-1}\Rightarrow n.u_n-2n=-\dfrac{1}{2^{n-1}}\)

\(\Rightarrow u_n=2-\dfrac{1}{n.2^{n-1}}\)

NV
21 tháng 1 2021

Với \(n>1\)

\(n\left(n^2-1\right)u_n=u_1+2u_2+...+\left(n-1\right)u_{n-1}\) (1)

\(\Leftrightarrow n^3-n.u_n=u_1+2u_2+...+\left(n-1\right)u_{n-1}\)

\(\Leftrightarrow n^3.u_n=u_1+2u_2+...+\left(n-1\right)u_{n-1}+n.u_n\) (2)

Thay n bởi \(n-1\) vào (2):

\(\Rightarrow\left(n-1\right)^3u_{n-1}=u_1+2u_2+...+\left(n-1\right)u_{n-1}\) (3)

Từ (1) và (3):

\(\Rightarrow n\left(n^2-1\right)u_n=\left(n-1\right)^2u_{n-1}\)

\(\Leftrightarrow n\left(n+1\right)u_n=\left(n-1\right)^2u_{n-1}\)

\(\Rightarrow u_n=\dfrac{\left(n-1\right)^2}{\left(n+1\right)n}u_{n-1}=\dfrac{\left(n-1\right)^2}{\left(n+1\right)n}.\dfrac{\left(n-2\right)^2}{n\left(n-1\right)}u_{n-2}=...=\dfrac{\left(n-1\right)^2\left(n-2\right)^2....1^2}{\left(n+1\right)n.n\left(n-1\right)...3.2}u_1\)

\(\Rightarrow u_n=\dfrac{\left[\left(n-1\right)!\right]^2}{\dfrac{\left(n+1\right).n^2\left[\left(n-1\right)!\right]^2}{2}}u_1=\dfrac{4}{n^2\left(n+1\right)}\) 

Công thức này chỉ đúng với \(n\ge2\)

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

Dãy số - cấp số cộng và cấp số nhân

Đặt \(u_n+\dfrac{5}{4}=v_n\)

\(GT\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{9}{4};v_2=\dfrac{13}{4}\\v_{n+2}=2v_{n+1}+3v_n\end{matrix}\right.\)

Ta có CTTQ của dãy \(\left(v_n\right)\) là:

\(v_n=\dfrac{11}{24}.3^n-\dfrac{7}{8}.\left(-1\right)^n\)

(Bạn tự chứng minh theo quy nạp)

\(\Rightarrow u_n=\dfrac{11}{24}.3^n-\dfrac{7}{8}\left(-1\right)^n-\dfrac{5}{4}\) với \(\forall n\in N\text{*}\)

\(\Rightarrow S=2\left(u_1+u_2+...+u_{100}\right)+u_{101}\)

\(=\left[\dfrac{11}{12}\left(3^1+3^2+...+3^{100}\right)-\dfrac{7}{4}\left(-1+1-...+1\right)-\dfrac{5}{2}.100\right]+\dfrac{11}{24}.3^{101}-\dfrac{7}{8}.\left(-1\right)^{101}-\dfrac{5}{4}\)

\(=\dfrac{11}{12}.\dfrac{3^{101}-3}{2}-250+\dfrac{11}{24}.3^{101}+\dfrac{7}{8}\)

\(=\dfrac{11}{24}.\left(2.3^{101}-3\right)-\dfrac{1993}{8}\)

\(=\dfrac{11}{4}.3^{100}-\dfrac{501}{2}\)