\(u_{10},u_{11},...,u_{2023}\) của dãy, có...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(U_n\) có chữ số tận cùng là 7

=>\(5n+2\) có chữ số tận cùng là 7

=>5n có chữ số tận cùng là 5

=>n lẻ

Số lượng số lẻ trong dãy số từ 10;11;...;2023 là:

\(\dfrac{\left(2023-11\right)}{2}+1=1007\left(số\right)\)

=>Trong dãy này có 1007 số hạng có tận cùng là 7

Để \(U_n\) có chữ số tận cùng là 2 thì \(5n+2\) có chữ số tận cùng là 2

=>5n có chữ số tận cùng là 0

=>n chẵn

=>\(U_n=5n⋮10\)

Số lượng số hạng \(U_n\) chia hết cho 10 khi \(960< U_n< 6900\) là:

\(\dfrac{\left(6900-960\right)}{10}+1-2=595-2=593\left(số\right)\)

NV
23 tháng 1 2022

\(u_3=u_1-u_2=6\)

\(u_4=u_2-u_3=3\)

\(u_5=u_3-u_4=3\)

NV
4 tháng 1 2021

\(S_n=3^n-1\)

\(S=2011\left(u_1+...+u_{2010}\right)-\left(u_1+...+u_{2009}\right)-\left(u_1+...+u_{2008}\right)-...-u_1\)

\(=2011S_{2010}-\left(S_{2009}+S_{2008}+...+S_1\right)\)

\(=2011\left(3^{2010}-1\right)-\left(3^{2009}-1+3^{2008}-1+...+3^1-1\right)\)

\(=2011\left(3^{2010}-1\right)-\left(3.\dfrac{3^{2009}-1}{3-1}-2009\right)\)

\(=...\)

23 tháng 12 2021

\(u_{n+1}=\sqrt{1+u_n^2}\left(1\right)\)

\(u_1=3=\sqrt{9}\)

\(u_2=\sqrt{1+u_1^2}=\sqrt{10}\)

\(u_3=\sqrt{1+u_2^2}=\sqrt{11}\)

...

Dự đoán công thức:\(u_n=\sqrt{n+8}\),\(n\ge1\) (*)

Thật vậy 

+)\(n=1,(*)\)\(\Leftrightarrow u_1=3\) (lđ)

+)Giả sử (*) đúng với mọi \(n=k,k>1\)

\((*)\Leftrightarrow u_k=\sqrt{k+8}\)

+)\(n=k+1,\) thay vào (1) có: \(u_{k+2}=\sqrt{1+u^2_{k+1}}=\sqrt{1+\left(\sqrt{1+u_k^2}\right)^2}=\sqrt{2+u^2_k}=\sqrt{2+k+8}=\sqrt{10+k}\)

\(\Rightarrow\)(*) đúng với n=k+1

Vậy CTSHTQ: \(u_n=\sqrt{n+8}\)\(n\ge1\)

NV
30 tháng 11 2018

Ta phân tích \(n^2=\dfrac{1}{3}\left(n+1\right)^3-\dfrac{1}{2}\left(n+1\right)^2+\dfrac{1}{6}\left(n+1\right)-\dfrac{1}{3}n^3+\dfrac{1}{2}n^2-\dfrac{1}{6}n\)

\(\Rightarrow u_{n+1}-\dfrac{1}{3}\left(n+1\right)^3+\dfrac{1}{2}\left(n+1\right)^2-\dfrac{1}{6}\left(n+1\right)=u_n-\dfrac{1}{3}n^3+\dfrac{1}{2}n^2-\dfrac{1}{6}n\)

Đặt \(v_n=u_n-\dfrac{1}{3}n^3+\dfrac{1}{2}n^2-\dfrac{1}{6}n\Rightarrow\left\{{}\begin{matrix}v_1=1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{6}=1\\v_{n+1}=v_n\end{matrix}\right.\)

Từ \(v_{n+1}=v_n\Rightarrow v_{n+1}=v_n=v_{n-1}=...=v_1=1\)

\(\Rightarrow u_n-\dfrac{1}{3}n^3+\dfrac{1}{2}n^2-\dfrac{1}{6}n=1\Rightarrow u_n=\dfrac{1}{3}n^3-\dfrac{1}{2}n^2+\dfrac{1}{6}n+1\)

\(\Rightarrow u_n=1+\dfrac{2n^3-3n^2+n}{6}=1+\dfrac{n\left(n-1\right)\left(2n-1\right)}{6}\)

8 tháng 1 2018

\(u_2=u_1+1^2=1+1^2=1+\dfrac{1\cdot2\cdot3}{6}\\ u_3=u_2+2^2=1+1^2+2^2=1+\dfrac{2\cdot3\cdot5}{6}\\ u_4=u_3+3^2=1+1^2+2^2+3^2=1+\dfrac{3\cdot4\cdot7}{6}\\ ...\\ \Rightarrow u_n=1+\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)

Đúng k nhỉ?

15 tháng 10 2023

1:

a: \(u_2=2\cdot1+3=5;u_3=2\cdot5+3=13;u_4=2\cdot13+3=29;\)

\(u_5=2\cdot29+3=61\)

b: \(u_2=u_1+2^2\)

\(u_3=u_2+2^3\)

\(u_4=u_3+2^4\)

\(u_5=u_4+2^5\)

Do đó: \(u_n=u_{n-1}+2^n\)