\(U_n=\dfrac{\left(5+\sqrt{7}\right)^n-\left(5-\sqrt{7}\right)^n}{2\sqrt{7}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

T lm nhé!

Ta có: \(U_{n+1}=\dfrac{\left(13+\sqrt{3}\right)^{n+1}-\left(13-\sqrt{3}\right)^{n+1}}{2\sqrt{3}}\)

\(=\dfrac{\left(13+\sqrt{3}\right)^n\cdot\left(13+\sqrt{3}\right)-\left(13-\sqrt{3}\right)^n\cdot\left(13-\sqrt{3}\right)}{2\sqrt{3}}\)

\(=\dfrac{\left(13+\sqrt{3}\right)^n\cdot\left(26+\sqrt{3}-13\right)-\left(13-\sqrt{3}\right)^n\left(26-\sqrt{3}-13\right)}{2\sqrt{3}}\)

\(=\dfrac{26\left(13+\sqrt{3}\right)^n+\sqrt{3}\left(13+\sqrt{3}\right)^n-13\left(13+\sqrt{3}\right)^n}{2\sqrt{3}}\)\(\dfrac{-26\left(13-\sqrt{3}\right)^n+\sqrt{3}\left(13-\sqrt{3}\right)^n+13\left(13-\sqrt{3}\right)^n}{.}\)

\(=\dfrac{26\left[\left(13+\sqrt{3}\right)^n-\left(13-\sqrt{3}\right)^n\right]}{2\sqrt{3}}\)\(+\dfrac{\sqrt{3}\left(13+\sqrt{3}\right)^n-13\left(13+\sqrt{3}\right)^n+\sqrt{3}\left(13-\sqrt{3}\right)^n+13\left(13-\sqrt{3}\right)^n}{2\sqrt{3}}\)

\(=\dfrac{26\left[\left(13+\sqrt{3}\right)^n-\left(13-\sqrt{3}\right)^n\right]}{2\sqrt{3}}+\dfrac{-\left[\left(13+\sqrt{3}\right)^n\left(13-\sqrt{3}\right)\right]}{2\sqrt{3}}+\dfrac{\left[\left(13-\sqrt{3}\right)^n\left(13+\sqrt{3}\right)\right]}{2\sqrt{3}}\)

\(=26U_n-\dfrac{166\left[\left(13+\sqrt{3}\right)^{n-1}-\left(13-\sqrt{3}\right)^{n-1}\right]}{2\sqrt{3}}\)

\(=26U_n-166U_{n-1}\) --> đpcm

P/s: Dấu = thứ 3 từ trên xuống cái p/s đấy là cả 1 dòng nha, tại dài quá nên ph chia lm 2 lần viết :v Lóa mắt

21 tháng 8 2017

Tks chị, hỉu r` ạ!!!

AH
Akai Haruma
Giáo viên
23 tháng 9 2017

Lời giải:

Đặt \(2290+7n=k^3\)

Vì \(50000\leq n\leq 100000\Rightarrow 352290\leq k^3\leq 702290\)

\(\Rightarrow 71\leq k\leq 88\)

Ta thấy \(7n+2290\equiv 1\pmod 7\Rightarrow k^3\equiv 1\pmod 7\)

Xét modulo \(7\) cho $k$ ta thu được \(k\equiv 1, 2,4\pmod 7\)

TH1: \(k=7t+1\Rightarrow 71\leq 7t+1\leq 88\Leftrightarrow 10\leq t\leq 12\)

Thay \(t=10,11,12\) ta thu được \(n\in\left\{50803;67466;87405\right\}\)

TH2: \(k=7t+2\Rightarrow 71\leq 7t+2\leq 88\Rightarrow 10\leq t\leq 12\)

Thay \(t=10,11,12\) ta thu được \(n\in\left\{52994;70107;90538\right\}\)

TH3: \(k=7t+4\Rightarrow 71\leq 7t+4\leq 88\Rightarrow 10\leq t\leq 12\)

Thay \(t=10,11,12\) ta thu được \(n\in\left\{57562;75593;97026\right\}\)

23 tháng 9 2017

Ta có:

\(50000\le n\le100000\)

\(\Leftrightarrow350000\le7n\le700000\)

\(\Leftrightarrow352290\le2290+7n\le702290\)

Gọi số lập phương đó là \(a^3\left(a\in N\right)\)

\(\Rightarrow352290\le a^3\le702290\)

\(\Leftrightarrow71\le a\le88\)

Bên cạnh đó ta có:

\(2290+7n=a^3\)

\(\Leftrightarrow n=\dfrac{a^3-2290}{7}=-327+\dfrac{a^3-1}{7}=\dfrac{\left(a-1\right)\left(a^2+a+1\right)}{7}-327\)

Giờ tìm a sao cho thỏa \(\left[{}\begin{matrix}a-1⋮7\\a^2+a+1⋮7\end{matrix}\right.\)\(71\le a\le88\)là xong

25 tháng 6 2018

\(1.\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\dfrac{|\sqrt{7}+1|-|\sqrt{7}-1|}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

\(3a.x+1-\dfrac{x-1}{3}< x-\dfrac{2x+3}{2}+\dfrac{x}{3}+5\)

\(\Leftrightarrow\dfrac{6\left(x+1\right)-2\left(x-1\right)}{6}< \dfrac{6x-3\left(2x+3\right)+2x+30}{6}\)

\(\Leftrightarrow6x+6-2x+2< 6x-6x-9+2x+30\)

\(\Leftrightarrow6x-2x-2x+6+2+9-30< 0\)

\(\Leftrightarrow2x-13< 0\)

\(\Leftrightarrow x< \dfrac{13}{2}\)

KL...............

\(b.5+\dfrac{x+4}{5}< x-\dfrac{x-2}{2}+\dfrac{x+3}{3}\)

\(\Leftrightarrow\dfrac{150+6\left(x+4\right)}{30}< \dfrac{30x-15\left(x-2\right)+10\left(x+3\right)}{30}\)

\(\Leftrightarrow150+6x+24< 30x-15x+30+10x+30\)

\(\Leftrightarrow6x-30x+15x-10x+150+24-30-30< 0\)

\(\Leftrightarrow-19x+114< 0\)

\(\Leftrightarrow x>6\)

KL..................

25 tháng 6 2018

Câu 4 :

Ta có :

\(A=\dfrac{3}{1-x}+\dfrac{4}{x}\)

\(=\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\)

Theo BĐT Bu - nhi a - cốp xki ta có :

\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

\(\Leftrightarrow\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\ge\left(\sqrt{\dfrac{3\left(1-x\right)}{1-x}}+\sqrt{\dfrac{4x}{x}}\right)^2=\left(\sqrt{3}+2\right)^2=7+4\sqrt{3}\)

Dấu \("="\) xảy ra khi \(\dfrac{3}{\left(1-x\right)^2}=\dfrac{4}{x^2}\)

\(\Leftrightarrow3x^2=4x^2-8x+4\)

\(\Leftrightarrow x^2-8x+4=0\)

\(\Delta=64-16=48>0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)

Vậy GTNN của\(A=7+4\sqrt{3}\) khi \(\left[{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)

1: =>3x+1=4

=>3x=3

hay x=1

2: \(\Leftrightarrow172\cdot x^2=\dfrac{1}{2^3}+\dfrac{7^9}{98^3}=\dfrac{1}{2^3}+\dfrac{7^9}{7^6\cdot2^3}\)

\(\Leftrightarrow172\cdot x^2=\dfrac{1}{2^3}+\dfrac{7^3}{2^3}=\dfrac{344}{2^3}\)

\(\Leftrightarrow x^2=\dfrac{1}{4}\)

=>x=1/2 hoặc x=-1/2

3: \(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{9}=\dfrac{4}{9}\\x-\dfrac{2}{9}=-\dfrac{4}{9}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{9}\end{matrix}\right.\)

4: =>x+2=0 và y-1/10=0

=>x=-2 và y=1/10