
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT
1

Các câu hỏi dưới đây có thể giống với câu hỏi trên

MH
9 tháng 4 2017
a) Dãy số bị chặn dưới vì un = 2n2 -1 ≥ 1 với mọi n ε N* và không bị chặn trên vì với số M dương lớn bất kì, ta có 2n2 -1 > M <=> n >
.
tức là luôn tồn tại n ≥
+ 1 để 2
- 1 > M.
b) Dễ thấy un > 0 với mọi n ε N*
Mặt khác, vì n ≥ 1 nên n2 ≥ 1 và 2n ≥ 2.
Do đó n(n + 2) = n2 + 2n ≥ 3, suy ra
.
Vậy dãy số bị chặn 0 < un
với mọi n ε N*
c) Vì n ≥ 1 nên 2n2 - 1 > 0, suy ra
> 0
Mặt khác n2 ≥ 1 nên 2n2 ≥ 2 hay 2n2 - 1≥ 1, suy ra
≤ 1.
Vậy 0 < un ≤ 1, với mọi n ε N* , tức dãy số bị chặn.
d) Ta có: sinn + cosn = √2sin(n +
), với mọi n. Do đó:
-√2 ≤ sinn + cosn ≤ √2 với mọi n ε N*
Vậy -√2 < un < √2, với mọi n ε N* .

BT
24 tháng 5 2017
TenAnh1 TenAnh1 A = (-4.36, -5.2) A = (-4.36, -5.2) A = (-4.36, -5.2) B = (11, -5.2) B = (11, -5.2) B = (11, -5.2)
Ta có :
u n + 1 − u n = − n + 1 2 + n + 1 + 1 − − n 2 + n + 1 = − n 2 − 2 n − 1 + n + 2 + n 2 − n − 1 = − 2 n < 0 ∀ n ≥ 1
Do đó ( u n ) là một dãy giảm.
Chọn đáp án D