K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2020

Bài làm:

Ta thấy quy luật của dãy số là tổng của các số tự nhiên tiếp:

1 = 1

3 = 1 + 2

6 = 1 + 2 + 3

10 = 1 + 2 + 3 + 4

...

Nên số thứ 100 sẽ là tổng của 100 số tự nhiên đầu tính từ 1

=> Số thứ 100 là: \(1+2+3+...+100=\frac{\left(100+1\right).100}{2}=5050\)

Mà 5050 không chia hết cho 3

=> Số hạng thứ 100 của dãy không chia hết cho 3

=> đpcm

trả lời:

Quy luật: Dãy số tăng dần: 1,2,3,4 .. đơn vị.

=>Cứ như vậy đến số hạng thứ 100 sẽ bằng số hạng thứ 99 cộng với 100.

Ta có:

   Số hạng thứ 100 gọi là a.

   a = 1 + ( 2+3+4+5+6+....+100)

   a =  1+ 2+ 3+ 4+ 5 +6 +...+100

   a = ( 100 + 1 ) x 100 : 2  

   a =  101 x 100 :2

   a = 10100 : 2

   a = 5050

30 tháng 3 2018

Hình như bài này sử dụng định lí Đi rich lê.

3 tháng 4 2018

Ta có 15 = 1 + 2 + 3 + 4 + 5 

Vì a1 là số nguyên dương nên \(a_1+a_2\ge3\)điều trên xảy ra khi \(a_1=1\)và \(a_2=a_1+1\)

Tương tự với \(a_1+a_2+a_3+a_4+a_5=a_1+\left(a_1+1\right)+...+\left(a_1+a_4\right)\)

\(=5a_1+10⋮15\)

Theo nguyên lý Dirichlet thì trong 2015 số nguyên dương sẽ tồn tại ít nhất 134 số chia hết cho 15 nếu \(a_1=15\)

Nếu các số nguyên dương trên có giá trị tương đương nhau thì \(a_1+a_2+...+a_{2015}=2015a_n\)

Vậy trong nguyên lý Dirichlet thì có thể tồn tại ít nhất 134 cặp số có tổng chia hết cho 15 với \(a_n\)nhỏ nhất là 1 

3 tháng 4 2018

ygtutr

cmr [7+1].[7+2] chia hết cho 3

=8x9

=72

72 chia hết cho 3

ĐCPCM

   Ta có chú ý chẵn cộng chẵn bằng chẵn

                        lẻ cộng chẵn bằng lẻ

                        lẻ cộng lẻ là chẵn

mà ta thấy \(3^{100}\) và\(19^{990}\)là lẻ mà lẻ cộng lẻ bằng chẵn 

=> mà số chẵn chia hết cho 2

ĐCPCM

S=1+31+32+33+...+330

3S=3+3^2+3^3+...+3^{31}3S=3+32+33+...+331

3S-S=3^{31}-13SS=3311

2S=3^{4.7+3}-12S=34.7+31

2S=81^7.27-12S=817.271

2S=\overline{......1}.27-12S=......1.271

2S=\overline{......7}-1=\overline{......6}2S=......71=......6

S=\overline{........3}S=........3

Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương

27 tháng 11 2019

1) CMR: (7+1)(7+2)\(⋮\)3

\(\left(7+1\right)\left(7+2\right)=8\cdot9⋮3\left(đpcm\right)\)

2) CMR: \(3^{100}+19^{990}⋮2\)

ta có: \(3^{100}\)có chữ số tận cùng là số lẻ

\(19^{990}\)có chữ số tận cùng là số lẻ

mà lẻ + lẻ = chẵn => đpcm

3) abcabc có ít nhất 3 ước số nguyên tố

ta có: abcabc = abc x 1001 = abc x 11 x 7 x 13

Vậy...

4) Cho \(M=1+3^1+3^2+...+3^{30}\)

Tìm chữ số tận cùng của M. Từ đó suy ra M có phải số chính phương không?

ta có: \(M=1+3^1+3^2+...+3^{30}\)(1)

\(\Rightarrow3M=3+3^2+3^3+...+3^{31}\)(2)

(2) - (1) \(\Leftrightarrow3M-M=\left(3+3^2+3^3+...+3^{31}\right)-\left(1+3^1+3^2+...+3^{30}\right)\)

\(\Leftrightarrow2M=3^{31}-1\)

ta có: \(3^{31}=3^{28}\cdot3^3=\left(3^4\right)^7\cdot27=\left(...1\right).27=...7\Rightarrow2M=...7-1=...6\)

\(\Rightarrow\orbr{\begin{cases}M=...3\\M=...8\end{cases}}\)mà số chính phương không có tận cùng là 3, 8

=>đpcm

Học tốt nhé ^3^

11 tháng 10 2018

a/ Gọi 3 số nguyên liên tiếp là a; a+1; a+2.

Theo GT ta có : \(a+\left(a+1\right)+\left(a+2\right)=3a+3\)

=3(a+1) \(⋮3\)(vì \(3⋮3\))

Vậy tổng ba số nguyên liên tiếp là số chia hết cho 3.

b/ Gọi 4 số cần tìm là a ; a+1; a+2 ; a+3

Theo Gt ta có :a+(a+1)+(a+2)+(a+3) = 4a+6

=2(2a+3)\(⋮̸4\)( vì số chia hết cho 2 chưa chắc chia hết cho 4)

Vậy tổng của 4 số nguyên liên tiếp không chia hết cho 4.

11 tháng 10 2018

a) 3 số liên tiếp là: n, n+1, n+2. ( n thuộc N )

Ta có: n + (n+1) + (n+2)= 3n+3 = 3(n+1) chia hết cho 3

b) 4 số liên tiếp: n, n+1, n+2, n+3 (n thuộc N )

Ta có: n+(n+1)+(n+2)+(n+3)= 4n+6 ko chia hết cho 4 vì: 4n chia hết cho 4 nhưng 6 ko chia hết cho 4.

21 tháng 2 2018

Ai nhanh mk k  cho !!!

14 tháng 10 2019

1. Chứng tỏ rằng: ab + ba chia hết cho 11:

Ta có: ab+ba=10a+b+10b+a=11a+11b=11(a+b) 

Vì \(11\left(a+b\right)⋮11\)

\(\Rightarrow ab+ba⋮11\)

Chứng tỏ rằng: ab - ba chia hết cho 9

Ta có: ab-ba=10a+b-10b-a=9a-9b=9(a-b)

vì \(9\left(a-b\right)⋮9\)

\(\Rightarrow ab-ba⋮9\)

14 tháng 10 2019

1. a) Ta có : ab + ba =  (a0 + b) + (b0 + a)

                                = (10a + b) + (10b + a)

                                = 10a + b + 10b + a

                                = (10a + a) + (b + 10b)

                                = 11a + 11b

                                = 11(a + b) \(⋮\)11

=> ab + ba  \(⋮\)11 (ĐPCM)

b) Ta có : ab - ba = (a0 + b) - (b0 + a) 

                            = (10a + b) - (10b + a) 

                            = 10a + b - 10b - a

                            = (10a - a) - (10b - b)

                            = 9a - 9b

                            = 9(a - b) \(⋮\)9

=>  ab + ba  \(⋮\)9 (ĐPCM)

2) Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2

Khi đó a + a + 1 + a + 2

   = 3a + 3

   = 3(a + 1) \(⋮\)3 (ĐPCM)

3) 

Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2

Khi đó a + a + 1 + a + 2

   = 3a + 3

   = 3(a + 1) 

=> Tổng của 3 số liên không chia hết cho 4 (ĐPCM)