Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(lim\left(u_n\right)=lim\frac{2a-3an}{n+2}=lim\frac{\frac{2a}{n}-3a}{1+\frac{2}{n}}=-3a\)
Để \(lim\left(u_n\right)=-\frac{1}{3}\Rightarrow-3a=-\frac{1}{3}\Rightarrow a=\frac{1}{9}\)
1) Có \(u_{n+1}-u_n=\dfrac{1}{2}u^2_n-2u_n+2=\dfrac{1}{2}\left(u_n-2\right)^2\) (1)
+) CM \(u_n>2\) (n thuộc N*)
n=1 : u1= 5/2 > 2 (đúng)
Giả sử n=k, uk > 2 (k thuộc N*)
Ta cần CM n = k + 1. Thật vậy ta có:
\(u_{k+1}=\dfrac{1}{2}u^2_k-u_k+2=\dfrac{1}{2}\left(u_k-2\right)^2+u_k\) (đúng)
Vậy un > 2 (n thuộc N*) (2)
Từ (1) (2) => un+1 - un > 0, hay un+1 > un
=> (un) là dãy tăng => \(\lim\limits_{n\rightarrow\infty}u_n=+\infty\)
2) \(2u_{n+1}=u^2_n-2u_n+4\)
\(\Leftrightarrow2u_{n+1}-4=u^2_n-2u_n\)
\(\Leftrightarrow2\left(u_{n+1}-2\right)=u_n\left(u_n-2\right)\)
\(\Leftrightarrow\dfrac{1}{u_{n+1}-2}=\dfrac{2}{u_n\left(u_n-2\right)}=\dfrac{1}{u_n-2}-\dfrac{1}{u_n}\)
\(\Leftrightarrow\dfrac{1}{u_n}=\dfrac{1}{u_n-2}-\dfrac{1}{u_{n+1}-2}\)
\(S=\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_n}\)
\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_2-2}+\dfrac{1}{u_2-2}+...-\dfrac{1}{u_{n+1}-2}\)
\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_{n+1}-2}\)
\(=2-\dfrac{1}{u_{n+1}-2}\)
\(\Leftrightarrow\lim\limits_{n\rightarrow\infty}S=2\)
a) Xét hiệu un+1 - un = - 2 - ( - 2) = - .
Vì < nên un+1 - un = - < 0 với mọi n ε N* .
Vậy dãy số đã cho là dãy số giảm.
b) Xét hiệu un+1 - un =
=
Vậy un+1 > un với mọi n ε N* hay dãy số đã cho là dãy số tăng.
c) Các số hạng ban đầu vì có thừa số (-1)n, nên dãy số dãy số không tăng và cũng không giảm.
d) Làm tương tự như câu a) và b) hoặc lập tỉ số (vì un > 0 với mọi n ε N* ) rồi so sánh với 1.
Ta có với mọi n ε N*
Vậy dãy số đã cho là dãy số giảm
Vì lim = 0 nên || có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi.
Mặt khác, ta có |un -1| < = || với mọi n. Nếu |un -1| có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi, nghĩa là lim (un -1) = 0. Do đó lim un = 1.
Có \(lim\dfrac{1}{n^3}=0\) mà \(\left|u_n-1\right|< \dfrac{1}{n^3}\) nên \(lim\left|u_n-1\right|=0\).
Suy ra: \(lim\left(u_n-1\right)=0\)\(\Leftrightarrow limu_n=1\).
Do \(-1\le sin\left[\left(a^2-1\right)n\right]\le1\) \(\forall a;n\)
\(\Rightarrow\frac{n-1}{n+1}\le\frac{n+sin\left[\left(a^2-1\right)n\right]}{n+1}\le\frac{n+1}{n+1}\)
Mà \(lim\left(\frac{n-1}{n+1}\right)=lim\left(\frac{n+1}{n+1}\right)=1\)
Nên theo định lý về giới hạn kẹp ta có \(lim\left(u_n\right)=1\)
\(\Rightarrow\) Với mọi số thực a thì \(lim\left(u_n\right)=1\)