K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

-5^2016

5 tháng 1 2017

nhầm kết quả ra 5 đấy 

29 tháng 10 2016

Giải:

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2016}}{a_{2017}}=\frac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+a_4+...+a_{2017}}\)

\(\Rightarrow\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}...\frac{a_{2016}}{a_{2017}}=\left(\frac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+a_4+...+a_{2017}}\right)^{2016}\)

\(\Rightarrow\frac{a_1}{a_{2017}}=\left(\frac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+a_4+...+a_{2017}}\right)^{2016}\left(đpcm\right)\)

7 tháng 9 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a1}{a2}=\frac{a2}{a3}=....=\frac{a2014}{a2015}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\)

=>\(\frac{a1}{a2}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(1\right)\)

\(\frac{a2}{a3}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(2\right)\)

...........

\(\frac{a2014}{a2015}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(2014\right)\)

Nhân (1),(2),....(2014) vế với vế:

\(\frac{a_1}{a_2}.\frac{a_2}{a_3}............\frac{a_{2014}}{a_{2015}}=\frac{a_1}{a_{2015}}=\left(\frac{a_1+a_2+...+a_{2014}}{a_2+a_3+...+a_{2015}}\right)^{2014}\) 

Vậy...

1 tháng 1 2017

Có:

a1+a2=a3+a4=...=a2015+a1=1

=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015

Mà 1007+a2015=0

=>a2015=-1007.

=>a1=1--1007

a1=1008.

Chúc học tốt^^

1 tháng 1 2017

Có:

a1+a2=a3+a4=...=a2015+a1=1

=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015

Mà 1007+a2015=0

=>a2015=-1007.

=>a1=1--1007

a1=1008.

Chúc học tốt^^