Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4
Đặt \(A=3+3^2+...+3^{20}\)
\(\Rightarrow A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\)
\(\Rightarrow A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{19}\left(1+3\right)\)
\(\Rightarrow A=3.4+3^3.4+...+3^{19}.4\)
\(\Rightarrow A=\left(3+3^3+...+3^{19}\right).4⋮4\)
\(\Rightarrow A⋮4\left(đpcm\right)\)
\(A=3+3^2+...+3^{20}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\)
\(\Rightarrow A=3\left(1+3+3^2+3^3\right)+...+3^{17}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=3.40+...+3^{17}.40\)
\(\Rightarrow A=\left(3+...+3^{17}\right).40⋮40\)
\(\Rightarrow A⋮40\left(đpcm\right)\)
Câu 3:
Giải:
a) \(5⋮x-5\)
\(\Rightarrow x-5\in\left\{1;5\right\}\)
+) \(x-5=1\Rightarrow x=6\)
+) \(x-5=5\Rightarrow x=10\)
Vậy \(x\in\left\{6;10\right\}\)
b) Ta có: \(x+3⋮x-3\)
\(\Rightarrow\left(x-3\right)+6⋮x-3\)
\(\Rightarrow6⋮x-3\)
\(\Rightarrow x-3\in\left\{1;2;3;6\right\}\)
\(\Rightarrow x\in\left\{4;5;6;9\right\}\)
Vậy \(x\in\left\{4;5;6;9\right\}\)
đa)102345
b)102348
c)102345 vì câu c bạn ghi thiếu nên mình lấy tạm số này
từ 1-1000 có số số chia hết cho 2 là:
(1000-2):2+1=500(số)
Đ/S:500 số
a)Ta có 7+4+*=11+*
Mà \(0\le\)*\(\le9\)
\(\Rightarrow\)*\(\in\left(1,4,7\right)\)
Vì 7+4+* phải chia hết cho 3
Câu 1 :
a) S1 = 1+2+3+...+999
Số số hạng trong S1 là 999
S1 = (1+999)x999:2=499500
S1 =499500
b) Số số hạng trong S2 là (2010-10):2+1=1001
S2= (10+2010)x1001:2=1011010
S2=1011010
c) Số số hạng trong S3 là (1001-21):2+1=491
S3=(21+1001)x491:2=250901
S3=250901
d)Số số hạng trong S5 là (79-1);3+1=27
S5=(1+79)x27:2=1080
S5=1080
e) Số số hạng trong S6 là (155-15):2+1=71
S6=(15+155)x71:2=6035
f) Số số hạng trong S7 là (115-15):10+1=11
S7= (15+115)x11:2=715
g) Số số hạng trong S4 là (126-24):1+1=103
S4= (24+126)x103:2=7725
Câu 2:
Ta có : a + 12 chia hết cho 36
a+12 chia hết cho 4,9
+) a+12 chia hết cho 4
Mà 12 chia hết cho 4
Suy ra: a chia hết cho 4 (nếu a ko chia hết cho 4 thì a+12 sẽ ko chia hết cho 4)
+) a+ 12 chia hết cho 9
Mà 12 ko chia hết cho 9
Suy ra a ko chia hết cho 9 ( nếu a chia hết cho 9 thì a+12 ko chia hết cho 9)
Vậy a chia hết cho 4; ko chia hết cho 9
Câu 3 :
a) Từ 1 đến 1000 có số số hạng chia hết cho 5 là:
(1000-5):5+1= 200(số)
ĐS: 200 số
b) +)1015+8 chia hết cho 2 vì 1015chia hết cho 2 và 8 chia hết cho 2
+)1015+8=10..0(15 chữ số 0)+8=10...08(14 chữ số 0)
Tổng các chữ số của số 10...08(14 chữ số 0) là 9 nên 1015+8 chia hết cho 9
c) +) 102010+8=10..0(2010 chữ số 0)+8=10...08(2009 chữ số 0)
Tổng các chữ số của số 10...08(2009 chữ số 0) là 9 nên 102010+8 chia hết cho 9
+) 102010+14=10..0(2010 chữ số 0)+14=10...014(2008 chữ số 0)
Tổng các chữ số của số 10...014(2008 chữ số 0) là 6 nên 102010+14 chia hết cho 3
+)102010+14 chia hết cho 2 vì 102010 là số chẵn và 14 là số chẵn
+)102010 -4=10..0(2010 chữ số 0)-4=99..96(2008 chữ số 9)
Tổng các chữ số của số 99...96(2008 chữ số 9) là : 2008x9+6=18078 chia hết cho 3
Nên 102010 -4 chia hết cho 3
Câu 4 :
mik bít làm nhưng buồn ngủ lắm, mai
số các số có 4 chữ số chia hết cho 3 là:
(9999-1002)/3+1=3000(số)
số các số ó 4 chữ số là:
(9999-1000)/1+1=9000(số)
số các số có 4 chữ số không chia hết cho 3 là:
9000-3000=6000(số)
Đáp số: 6000 số
Cách 1:
Một số chia hết cho Ư(6) và số còn lại cũng chia hết cho Ư(6)
Ví dụ: Số chia hết cho 2 với số chia hết cho 3, số chia hết cho 1 với số chia hết cho 6, ...
Cách 2:
Chọn hai số trong đó có một hoặc cả hai số chia hết cho 6
Ví dụ: 120 và 111
Cách 3:
Chọn hai số trong đó có một hoặc cả hai số chia hết cho B(6)
\(C=3+3^2+3^3+3^4+......+3^{100}=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
=3.(1+3+32+33)+...+397.(1+3+32+33)
=3.40+...+397.40
=40.(3+...+397) chia hết cho 40
=> C chia hết cho 40
b.hàng nghìn có 3 cách chọn
hàng trăm có 4 cách chọn
hàng chục có 5 cách chọn
hàng đv có 2 cách chọn
=> có 2.3.4.5=120(số|)
a, Trong dãy số 100; 101; 102;…;999 gồm có: (999 – 102) : 3 + 1 = 300 số chia hết cho 3.
b, Trong dãy số 100; 101; 102;…;999 gồm có: (999 – 108) : 9 +1 =100 số chia hết cho 9.
Trong dãy số tự nhiên 1; 2; 3; ...; 899 có bao nhiêu số lẻ chia hết cho 9?