ΔABCcó AB < BC . Trên tia BA lấy điểm D sao cho BC = BD . Tia p/g của góc B cắt cạ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2019

B D C A H K E 1 2

a) Xét \(\Delta BED\)và \(\Delta BEC\)có:

BC=BD (giả thiết)

\(\widehat{B_1}=\widehat{B_2}\)( BE là phân giác góc B trong tam giác ABC)

BE chung

=> \(\Delta BED\)=\(\Delta BEC\)(c.g.c)

b) Vì  \(\Delta BED\)=\(\Delta BEC\)( theo câu a)

=> DE=EC ( cạnh tương ứng bằng nhau) (1)

mà ta lại có: DK=KC ( K là trung điểm DC) (2)

 và EK chung  (3)

Từ (1) (2) (3) => \(\Delta EDK=\Delta ECK\)(c.c.c)

=>\(\widehat{DKE}=\widehat{CKE}\) ( góc tương ứng)

mà \(\widehat{DKE}+\widehat{CKE}=180^o\)

=> \(\widehat{DKE}=\widehat{CKE}=90^o\)hay \(EK\perp DC\)

c) Tương tự như trên ta chứng minh được \(\Delta DBK=\Delta CBK\)( c.c.c)

=> \(\widehat{DBK}=\widehat{CBK}\)

=> K thuộc tia phân giác góc B 

=> B,E<, K thẳng hàng

d) Theo đề bài ta có: \(AH\perp DC\)và \(BK\perp DC\)

=> AH//BK

=> \(\widehat{DBK}=\widehat{DAH}\)

Để góc DAH=45 độ 

=> \(\widehat{CBD}=2.\widehat{DBK}=2.\widehat{DAH}=2.45^o=90^o\)

Hay tam giác ABC vuông tại B

9 tháng 12 2017

ukm xem lại xem có sai đề ko nào

24 tháng 4 2020

hoc ngu nhu bo

19 tháng 4 2020

a) áp dụng định lý Pytago cho tam giác ABC vuông tại A có:

AB2+AC2=BC2

=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{100-36}=\sqrt{64}=8\left(cm\right)\left(AC>0\right)\)

26 tháng 7 2018

a, Xét \(\Delta ABD\)và \(\Delta EBD\)có :

\(\widehat{ABD}\)\(=\widehat{EBD}\)( BD là tia p/g của \(\widehat{ABC}\))

BD chung ( gt )

\(\widehat{BAD}\)\(=\widehat{BED}\)( = 90)

\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)

\(\Rightarrow AB=BE\)( 2 cạnh t.ư )

b, Xét \(\Delta ABE\)có :

AB = BE ( câu a )

\(\Rightarrow\)\(\Delta ABE\)cân tại B

Mà BF là đường p/g của \(\Delta ABE\)

\(\Rightarrow BF\perp AF\)hay BD là đường tt của AE

c, Ta có :

\(\hept{\begin{cases}AB\perp AC\left(gt\right)\\DK\perp Ac\left(gt\right)\end{cases}}\Rightarrow\hept{ }AB//DK\)

\(\Rightarrow\widehat{ABD=}\)\(\widehat{BDK}\)(SLT)

\(\widehat{ABD}\)\(=\widehat{DBE}\)( BD là tia p/g \(\widehat{ABE}\))

\(\Rightarrow\widehat{BDK}\)\(=\widehat{DBK}\)

Xét \(\Delta BDK\)có :

\(\widehat{BDK}\)\(=\widehat{DBK\left(cmt\right)}\)

\(\Rightarrow\Delta BDK\)cân tại K

\(\Rightarrow BK=DK\left(dpcm\right)\)

d, Xét \(\Delta ABH\)có : \(AB< BH+AH\)(1)

Xét \(\Delta AHC\)có : \(AC< AH+CH\)(2)

Từ (1) và (2) \(\Rightarrow AB+AC< AH+BH+AH+CH\)

Hay \(AB+AC< BC+2AH\left(dpcm\right)\)

3 tháng 2 2016

Bạn vẽ hình giùm được ko?????

3 tháng 2 2016

mik nghĩ vẽ hình sẽ làm bài dễ hơn đó

15 tháng 7 2018

Bạn cho đề sai rồi

31 tháng 7 2018

a, Xét \(\Delta ABD\)và \(\Delta EBD\)có :

\(\widehat{ABD}\)=\(\widehat{EBD}\)( BD là tia p/g của \(\widehat{ABC}\) )

BD chung ( gt )

\(\widehat{BAD}\)\(\widehat{BED}\)( = 90o )

\(\Rightarrow\Delta ABD=\Delta BED\)( ch - gn )

\(\Rightarrow AB=BE\)( 2 cạng t.ư )

b, Xét \(\Delta ABE\)có :

AB = AE ( câu a ) \(\Rightarrow\Delta ABE\)cân tại B

BF là đường p/g của \(\Delta ABE\)

\(\Rightarrow BF\perp AF\)hay BD là đường tt của AE

c, Ta có : \(AB\perp AC\left(gt\right)\)

              \(DK\perp AC\left(gt\right)\)

\(\Rightarrow AB//DK\)

\(\Rightarrow\widehat{ABD}\)\(\widehat{BDK}\)(SLT)

Mà \(\widehat{ABD}\)=  \(\widehat{DBE}\)( BD là tia p/g \(\widehat{ABE}\))

\(\Rightarrow\widehat{BDK}\)\(\widehat{DBK}\)

Xét \(\Delta DBK\)có :

\(\widehat{BDK}\)\(\widehat{DBK}\)(cmt) 

\(\Rightarrow\Delta BDK\)cân tại K

\(\Rightarrow BK=KD\left(đpcm\right)\)

d, Xét \(\Delta ABH\)có : AB < BH + AH

Xét \(\Delta AHC\)có : AC < AH + CH

\(\Rightarrow AB+AC< AH+BH+AH+CH\)

Hay \(AB+AC< BC+2AH\left(đpcm\right)\)

18 tháng 12 2019

Hình bạn tự vẽ nha!

a)

Xét tam giác ABM và tam giác ADM có:

AB = AD (gt)

BM = DM (vì M là trung điểm của BD)

AM là cạnh chung

=> Tam giác ABM = Tam giác ADM (c . c . c)

b) Xét tam giác ABD có:

AB = AD (gt)

=> Tam giác ABD cân tại A.

Có M là trung điểm của BD

=> AM là đường trung tuyến của tam giác ABD.

=> AM đồng thời là đường cao của tam giác ABD.

=> AM ⊥ BD.

c) Theo câu b) ta có tam giác ABM = tam giác ADM.

=> BAM = DAM (2 góc tương ứng)

Hay BAK = DAK.

Xét tam giác ABK và tam giác ADK có:

AB = AD (gt)

BAK = DAK (cmt)

AK là cạnh chung

=> Tam giác ABK = Tam giác ADK (c . g . c)

=> ABK = ADK (2 góc tương ứng).

d) Theo câu c) ta có tam giác ABK = tam giác ADK.

=> BK = DK (2 cạnh tương ứng).

Ta có:

ABK + KBF = 1800 (vì 2 góc kề bù)

ADK + KDC = 1800 (vì 2 góc kề bù)

Mà ABK = ADK (cmt)

=> KBF = KDC

Xét tam giác KBF và tam giác KDC có:

KB = KD (cmt)

KBF = KDC (cmt)

BF = DC (gt)

=> Tam giác KBF = Tam giác KDC (c . g . c)

=> BKF = DKC (2 góc tương ứng)

Lại có: BKD + DKC = 180 (2 góc kề bù)

Mà BKF = DKC (cmt).

=> BKD + BKF = 1800

Mà BKD + BKF = FKD.

=> FKD = 1800

=> F, K, D thẳng hàng (đpcm).

Chúc bạn học tốt!