Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B D C A H K E 1 2
a) Xét \(\Delta BED\)và \(\Delta BEC\)có:
BC=BD (giả thiết)
\(\widehat{B_1}=\widehat{B_2}\)( BE là phân giác góc B trong tam giác ABC)
BE chung
=> \(\Delta BED\)=\(\Delta BEC\)(c.g.c)
b) Vì \(\Delta BED\)=\(\Delta BEC\)( theo câu a)
=> DE=EC ( cạnh tương ứng bằng nhau) (1)
mà ta lại có: DK=KC ( K là trung điểm DC) (2)
và EK chung (3)
Từ (1) (2) (3) => \(\Delta EDK=\Delta ECK\)(c.c.c)
=>\(\widehat{DKE}=\widehat{CKE}\) ( góc tương ứng)
mà \(\widehat{DKE}+\widehat{CKE}=180^o\)
=> \(\widehat{DKE}=\widehat{CKE}=90^o\)hay \(EK\perp DC\)
c) Tương tự như trên ta chứng minh được \(\Delta DBK=\Delta CBK\)( c.c.c)
=> \(\widehat{DBK}=\widehat{CBK}\)
=> K thuộc tia phân giác góc B
=> B,E<, K thẳng hàng
d) Theo đề bài ta có: \(AH\perp DC\)và \(BK\perp DC\)
=> AH//BK
=> \(\widehat{DBK}=\widehat{DAH}\)
Để góc DAH=45 độ
=> \(\widehat{CBD}=2.\widehat{DBK}=2.\widehat{DAH}=2.45^o=90^o\)
Hay tam giác ABC vuông tại B
a) áp dụng định lý Pytago cho tam giác ABC vuông tại A có:
AB2+AC2=BC2
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{100-36}=\sqrt{64}=8\left(cm\right)\left(AC>0\right)\)
a, Xét \(\Delta ABD\)và \(\Delta EBD\)có :
\(\widehat{ABD}\)\(=\widehat{EBD}\)( BD là tia p/g của \(\widehat{ABC}\))
BD chung ( gt )
\(\widehat{BAD}\)\(=\widehat{BED}\)( = 90o )
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
\(\Rightarrow AB=BE\)( 2 cạnh t.ư )
b, Xét \(\Delta ABE\)có :
AB = BE ( câu a )
\(\Rightarrow\)\(\Delta ABE\)cân tại B
Mà BF là đường p/g của \(\Delta ABE\)
\(\Rightarrow BF\perp AF\)hay BD là đường tt của AE
c, Ta có :
\(\hept{\begin{cases}AB\perp AC\left(gt\right)\\DK\perp Ac\left(gt\right)\end{cases}}\Rightarrow\hept{ }AB//DK\)
\(\Rightarrow\widehat{ABD=}\)\(\widehat{BDK}\)(SLT)
Mà\(\widehat{ABD}\)\(=\widehat{DBE}\)( BD là tia p/g \(\widehat{ABE}\))
\(\Rightarrow\widehat{BDK}\)\(=\widehat{DBK}\)
Xét \(\Delta BDK\)có :
\(\widehat{BDK}\)\(=\widehat{DBK\left(cmt\right)}\)
\(\Rightarrow\Delta BDK\)cân tại K
\(\Rightarrow BK=DK\left(dpcm\right)\)
d, Xét \(\Delta ABH\)có : \(AB< BH+AH\)(1)
Xét \(\Delta AHC\)có : \(AC< AH+CH\)(2)
Từ (1) và (2) \(\Rightarrow AB+AC< AH+BH+AH+CH\)
Hay \(AB+AC< BC+2AH\left(dpcm\right)\)
a, Xét \(\Delta ABD\)và \(\Delta EBD\)có :
\(\widehat{ABD}\)=\(\widehat{EBD}\)( BD là tia p/g của \(\widehat{ABC}\) )
BD chung ( gt )
\(\widehat{BAD}\)= \(\widehat{BED}\)( = 90o )
\(\Rightarrow\Delta ABD=\Delta BED\)( ch - gn )
\(\Rightarrow AB=BE\)( 2 cạng t.ư )
b, Xét \(\Delta ABE\)có :
AB = AE ( câu a ) \(\Rightarrow\Delta ABE\)cân tại B
BF là đường p/g của \(\Delta ABE\)
\(\Rightarrow BF\perp AF\)hay BD là đường tt của AE
c, Ta có : \(AB\perp AC\left(gt\right)\)
\(DK\perp AC\left(gt\right)\)
\(\Rightarrow AB//DK\)
\(\Rightarrow\widehat{ABD}\)= \(\widehat{BDK}\)(SLT)
Mà \(\widehat{ABD}\)= \(\widehat{DBE}\)( BD là tia p/g \(\widehat{ABE}\))
\(\Rightarrow\widehat{BDK}\)= \(\widehat{DBK}\)
Xét \(\Delta DBK\)có :
\(\widehat{BDK}\)= \(\widehat{DBK}\)(cmt)
\(\Rightarrow\Delta BDK\)cân tại K
\(\Rightarrow BK=KD\left(đpcm\right)\)
d, Xét \(\Delta ABH\)có : AB < BH + AH
Xét \(\Delta AHC\)có : AC < AH + CH
\(\Rightarrow AB+AC< AH+BH+AH+CH\)
Hay \(AB+AC< BC+2AH\left(đpcm\right)\)
Hình bạn tự vẽ nha!
a)
Xét tam giác ABM và tam giác ADM có:
AB = AD (gt)
BM = DM (vì M là trung điểm của BD)
AM là cạnh chung
=> Tam giác ABM = Tam giác ADM (c . c . c)
b) Xét tam giác ABD có:
AB = AD (gt)
=> Tam giác ABD cân tại A.
Có M là trung điểm của BD
=> AM là đường trung tuyến của tam giác ABD.
=> AM đồng thời là đường cao của tam giác ABD.
=> AM ⊥ BD.
c) Theo câu b) ta có tam giác ABM = tam giác ADM.
=> BAM = DAM (2 góc tương ứng)
Hay BAK = DAK.
Xét tam giác ABK và tam giác ADK có:
AB = AD (gt)
BAK = DAK (cmt)
AK là cạnh chung
=> Tam giác ABK = Tam giác ADK (c . g . c)
=> ABK = ADK (2 góc tương ứng).
d) Theo câu c) ta có tam giác ABK = tam giác ADK.
=> BK = DK (2 cạnh tương ứng).
Ta có:
ABK + KBF = 1800 (vì 2 góc kề bù)
ADK + KDC = 1800 (vì 2 góc kề bù)
Mà ABK = ADK (cmt)
=> KBF = KDC
Xét tam giác KBF và tam giác KDC có:
KB = KD (cmt)
KBF = KDC (cmt)
BF = DC (gt)
=> Tam giác KBF = Tam giác KDC (c . g . c)
=> BKF = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180 (2 góc kề bù)
Mà BKF = DKC (cmt).
=> BKD + BKF = 1800
Mà BKD + BKF = FKD.
=> FKD = 1800
=> F, K, D thẳng hàng (đpcm).
Chúc bạn học tốt!